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Introduction

This three-year grant was initiated in December 2000. All work done under the auspices of the
grant is summarized herein, and the various papers written under grant sponsorship are appended
to provide all the technical details. The objective of this research was to provide high-fidelity,
finite-element-based simulation capability to assist in the analysis and design of structures for
space applications. The importance of such a research stems from the Air Force interest of space
structures comprising antennas, solar concentrators, sun shields, struts and booms, and membrane
mirrors. Moreover, the various components of these systems often are in relative motion with
respect to one another, resulting in variable geometry systems that are truly multi-body in nature.
Low-cost, accurate simulation tools are essential for the design, analysis and assessment of such
systems. However, efficiency of such a simulation tool can only be achieved through dimensional
reduction: it is impractical to treat each structural element as a three-dimensional (3-D) body.
Hence, low-order, accurate models are needed to not only provide the elastic constants needed
in the finite element representation to calculate the global behavior, but also to provide a unified
means to obtain the strain and stress distribution in the structures.

There are two main research aspects in this project: a local through-the-thickness model fo-
cuses on the evaluation of elastic constants and displacement/strain/stress recovery, and a finite-
element-based, nonlinear flexible multi-body dynamics simulation tools based on those models.
The basic research issues that have been addressed under the first aspect are

1. Constructing an accurate Reissner-Mindlin type model for composite plate using the varia-
tional asymptotic method (VAM) [1];

2. Constructing of an accurate Reissner-Mindlin type model for composite shells using VAM
including both geometrical correction due to initial curvature and transverse shear effects;

3. Developing a geometrically exact nonlinear shear deformation shell theory to be compatible
with the models developed; :

4. Modeling regular composite plates and shells including hygrothermal effects so that the
change of structural behavior due to moisture and temperature can be analyzed;

5. Modeling smart composite plates and shells made with piezoelectric material.

Approach

The variational asymptotic method (VAM) has applied to develop a high-fidelity/low-order model
for composite plates and shells. Instead of employing ad-hoc assumptions, the VAM relies on the
use of the small parameters that are inherent to the structure. This ensures construction of a theory
with the minimum complexity for a given level of fidelity. The original 3-D nonlinear problem is
formulated based on a set of two-dimensional (2-D) intrinsic variables and warping functions rep-
resenting the arbitrary deformation of the normal line. Then the VAM is used to rigorously split the
3-D problem into two problems: a nonlinear, 2-D, plate or shell analysis over the reference surface
to obtain the global deformation and a one-dimensional (1-D) linear analysis through the thick-
ness to provide the 2-D generalized constitutive law and the recovering relations to approximate
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the original 3-D results. The non-uniqueness of asymptotic theory correct up to a certain order is
used to cast the obtained asymptotically correct second-order energy into a Reissner-Mindlin type
model to account for transverse shear deformation. All the developed theories are implemented
in a finite element code, Variational Asymptotic Plate and Shell Analysis (VAPAS). Results from
VAPAS have been compared with the exact solutions available in the literature, classical lamina-
tion theory and first-order shear-deformation theory to demonstrate the accuracy and power of the
developed theory.

Work Accomplished

Asymptotic Construction of Composite Plate Model

The development starts with formulation of 3-D anisotropic elasticity problem in which the defor-
mation of the reference surface is expressed in terms of intrinsic 2-D variables. The VAM is then

“used to rigorously split this 3-D problem into a linear 1-D analysis and a nonlinear 2-D “plate”

analysis accounting for transverse shear deformation. The through-the-tluckness analysis provides

~ a constitutive law between the generalized, two-dimensional strains and stress resultants as well
as recovering relations to approximately but accurately express the 3-D displacement, strain and

stress fields in terms of plate variables calculated in the “plate” analysis. It is known that more
than one theory may exist that is asymptotically correct to a given order. This non-uniqueness is
used to cast a strain energy functional that is asymptotically correct through the second order into
a simple “Reissner-Mindlin” type plate theory. Although it is not possible in general to construct
an asymptotically correct Reissner-Mindlin type composite plate theory, an optimization proce-
dure is used to drive the present theory as close to being asymptotically correct as possible while
maintaining the simplicity of the Reissner-Mindlin formulation. This theory is firstly formulated
analytically and reported on an ASME conference [2] and later archived in [3]. Later, for the pur-
pose to connecting with 2-D finite-clement analysis code and efficiency for multilayer analysis, a
finite-element formulation is developed and published in [4].

Asymptotic Construction of Composite Shell Model

A rigorous and systematic dimensional reduction of a shell-like structure is undertaken. Instead of
the transverse shear refinement we have for plates, an accurate shell model will also include the
geometry correction due to the initial curvatures of the shell structure. There are two main small
parameters, h/l and h/R, where h is the thickness of the shell, { is the wavelength of in-plane de-
formation and R is the minimum radius of curvature for the shell structure. The asymptotic orders
of these two small parameters are carefully chosen so that an energy asymptotically correct up to
the first order of 4/ R and the second order of k/I has been successfully constructed. Our studies
[5, 6] show that the constructed model can predict the stress distribution through the thickness very
accurately for shall shells. Improvement to this theory can be made to include the second order
of h/R so that deep shells can also be accurately modeled. A 2-D geometrically exact nonlinear
shear deformation shell theory [7] has been developed to be consistent with the Reissner-Mindlin
type model constructed. A complete set of kinematical and intrinsic equilibrium equations are
derived for shells undergoing large displacements and rotations but with small, 2-D generalized
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strains. The large rotation is represented by the general finite rotation is along the normal line. It is
shown that the rotation of the frame about the normal line is not zero and that it can be expressed in
terms of other global deformation variables. It is also shown that only five equilibrium equations
can be derived in this manner because the component of virtual rotation about the normal is not
independent.

A Thermolelastic Composite Plate Model

Composite structures are more sensitive and vulnerable to temperature change than their isotropic
counterpart because the thermal expansion coefficients of different constituents of the aterial are
usually dramatically different from each other resulting in high stresses due to sudden temperature
change. The analysis including thermal effects is much more involved than that for isothermal
conditions. A Reissner-Mindlin type plate model capable of performing a thermoelastic stress
analysis of laminated composite plates has been constructed by the VAM. It is shown in [8] that
although the resulting theory is of the simple Reissner-Mindlin form, it has an accuracy comparable
to a higher-order layerwise theory. The hygro effect due to moisture to composite plates can also
handled in exactly the same procedure except one has to replace the thermal expansion coefficients
with hygroscopic expansion coefficients and temperature with moisture.

A Thermopiezoelastic Composite Plate Model

A Reissner-Mindlin type model for analyzing laminated smart composite plates including piezo-
electric layers under mechanical, thermal and electric loads has been developed. This model can
analyze the one-way coupling between structure and thermal, electric field. The non-mechanical
stress resultants due to temperature and actuation can be predicted using this model. This theory
has been implemented into the computer program VAPAS and validated against published exact
solutions for simple problems. As reported in [9, 10], the recovered 3-D stress distribution due to
temperature, or electricity has a good agreement with the exact solutions.

A Thermopiezoelastic Composite Shell Model

Finally, the above developed thermopiezoelastic model for smart plates is extended to model smait
shells made embedded with piezoelectric layers. All the effects due to temperature, electricity,
initial curvature and transverse shear are represented in this model. This model is also implemented
in the computer program VAPAS and a paper giving the results has been accepted for presentation
at the 2004 AIAA SDM conference [11].

Multibody Modeling of Shells and Membranes

The classical approach to the numerical simulation of flexible multibody systems proceeds in two
steps: first, the equations of motxon of the system are written in a convement form, then general
purpose Differential Al : e IS¢

the time domain. General purpose DAE 1ntegrators are spemﬁcally des1gned for eﬁ’ectlvely dealmg
with the dual differential/algebraic nature of the equations but are otherwise unaware of the specific
features and characteristics of the equations being solved.
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The equations governing nonlinear flexible multibody systems with shells and membranes
present very specific features. First, they are characterized by linear and rotational tensorial fields
describing kinematic (displacements, velocities) and co-kinematic (forces, momenta) quantities.
Second, ‘nonlinearities can arise from several sources: large displacements and finite rotations
(geometric nonlinearities), or nonlinear constitutive laws for the deformable components of the
system (material nonlinearities). Third, a distinguishing feature of multibody systems is the pres-
ence of joints which impose different types of kinematic constraints between the various bodies of
the system. More often than not, constraints are modeled via the Lagrange multipliers technique
that imposes the nonlinear algebraic constraints on the system. Fourth, the exact solution of the
equations of motion implies the preservation of a number of dynamic invariants, such as energy
and momenta. Fifth, when the elastic bodies of the system are modeled by means of an appro-
priate spatial discretization process, such as the finite element method, high frequency modes are
introduced in the system. Finally, when dealing with shells and membranes, the ratio of in-plane
to out-of-plane frequencies is extremely high, leading to very stiff systems. '

While standard approaches perform adequately for a number of simulations, problems can arise
when modeling flexible, nonlinear multibody systems involving shells and membranes. In this
case, robust algorithms that satisfy precise requirements should be designed for the time integration
of such systems. A formulation of time integrators for shells and membranes was developed that
satisfies the following requirements: nonlinear unconditional stability of the scheme, a rigorous -
treatment of all nonlinearities, the exact satisfaction of the constraints, and the presence of high
Jrequency numerical dissipation. The proof of nonlinear unconditional stability stems from two
physical characteristics of multibody systems that will be reflected in the numerical scheme: the
preservation of the total mechanical energy, and the vanishing of the work performed by constraint
. forces. Numerical dissipation is obtained by letting the solution drift from the constant energy
manifold in a controlled manner in such a way that at each time step, energy can be dissipated but
not created.

A novel integration scheme for nonlinear dynamics of geometrically exact shells was devel-
oped based on the inextensible director assumption. The new algorithm is designed so as to imply
the strict decay of the system total mechanical energy at each time step, and consequently uncondi-
tional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high
frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite
element spatial formulation of shells based on mixed interpolations of strain tensorial components
and on a two-parameter representation of director rotations. The robustness of the scheme is illus-
trated with the help of numerical examples presented at conferences [12, 13] and later published
in a paper [14].

Next, these algorithms were extended to deal with the complexities associated with multibody
systems. Results were first presented at conferences [15, 16] and later published in papers [17, 18]
addressing various aspects of the problem. The modeling of cables and membranes was addressed

in [19].

Conclusions and Suggestions

A rigorous framework to construct accurate model for composite plates and shells has been estab-
lished under this grant using the variational asymptotic method. Models constructed this way can



not only provide accurate 2-D constitutive model for plate or shell analysis but also a consistent
way to recover the original 3-D displacement/strain/stress fields. All the theories developed have
been implemented in the computer program VAPAS. VAPAS has been connected with DYMORE
to provide an efficient yet accurate simulation for complex aerospace systems.

More work needs to be done to verify the developed and implemented thermopiezoelastic
model for smart shells against available published results. And also the developed shell mod-
els could be improved by constructing an energy asymptotically correct up to the second order in
h/R. However, this requires significant research effort and would also require the development of
shell models capable of providing the required mputs to such models.
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Summary

, Hnoh -fidelity, finite-element-based dnmensnonally reduced models have been constructed for com-
posite plates and shells, mcludmo hygrothermal and piezoelectric effects, under the sponsorship
" of AFOSR. In these models, the smallness of the thickness has been used to advantage to rig-
orously reduce the original thrée-dimensional oeometrlcally nonlinear elastncnty theory to two-
dimensional Reissner-Mindlin type theory for plates and shells. The resulting théory can achieve
an accuracy comparable to higher-order layerwise theories at the cost of only a first-order shear
deformation theory. The dimensional reduction process and the recovery relations for the original
three-dimensional displacements/strains/stresses are implemented in a finite-element code, Varia-
tional Asymptotic Plate and Shell Analysis (VAPAS). This program is connected with DYMORE,
a nonlinear finite-element based multi-body dynamic code to provide an efficient and accurate sim-
ulation capablllty for space systems involving composite and inflatable components wnth actuated

elements: Wthh are reqmred for current and future Air Force missions. v '




Introductidn

This three-year grant was initiated in December 2000. All work done under the auspices of the
grant is summarized herein, and the various papers written under grant sponsorship are appended
to provide all the technical details. The objective of this research was to provide high-fidelity,
finite-element-based simulation capability to assist in the analysis and design of structures for
space applications. The importance of such a research stems from the Air Force interest of space
structures comprising antennas, solar concentrators, sun shields, struts and booms, and membrane
mirrors. Moreover, the various components of these systems often are in relative motion with.
respect to one another, resulting in variable geometry systems that are truly multi-body in nature,
‘Low-cost, accurate simulation tools are essential for the design, analysis and assessment of such
systems. However, efficiency of such a simulation too! can only be achieved through dimensional
reduction: it is impractical to treat each structural element as a three-dimensional (3-D) body.
Hence, low-order, accurate models are needed to not only provide the elastic constants needed
in the finite element representation to calculate the global behavior, but also to provide a unified
means to obtain the strain and stress distribution in the structures. ‘

- There are two main research aspects in this project: a local through-the-thickness model fo-
cuses on the evaluation of elastic constants and displacement/strain/stress recovery, and a finite-
element-based, nonlinear flexible multi-body dynamics simulation tools based on those models.
The basic research issues that have been addressed under the first aspect are

1. Constructmo an accurate Reissner-Mindlin type model for comp051te plate using the varia-
tional asymptotxc method (VAM) [l]

2. Constructing of an accurate Reissner-Mindlin type model for composite shells using VAM
including both geometrical correction due to initial curvature and transverse shear effects;

3. Developing a oeometncally exact nonlmear shear deformation shell theory to be compatlble
with the models developed . :

4. Modeling regular composite plates and shells including hygrothermal cffeclts so that the
change of structural behavior due to moisture and temperature can be analyzed,;

5. Modeling smart composite plates and shells made with piezoelectric material.

- Approach

- The variational asymptotic method (VAM) has applied to develop a high-fidelity/low-order model
for composite plates and shells. Instead of employing ad-hoc assumptions, the VAM relies on the
“use of the small parameters that are inherent to the structure. This ensures construction of a theory
with the minimum complexity for a given level of fidelity. The original 3- D nonlinear problem is
formulated based on a set of two-dimensional (2 D) intrinsic variables and warpmo functions rep-
resenting the arbitrary. deformation of the normal line. Then the VAM is used to ri igorously split the
3-D problem into two problems -a nonlinear, 2-D, plate or shell analysis over the reference surface -
to obtain the global deformation and a one- dimensional (1-D) linear analysis through the thick-
ness to provide the 2-D generalized constitutive law and the recovering relations to approximate




the original 3-D results. The non-uniqueness of asymptotic theory correct up to a certain order is
used to cast the obtained asymptotically correct second-order energy into a Reissner-Mindlin type
model to account for transverse shear deformation. All the developed theories are implemented
in a finite element code, Variational Asymptotic Plate and Shell Analysis (VAPAS). Results from
VAPAS have been compared with the exact solutions available in the literature, classical lamina-
tion theory and first-order shear-deformation theory to demonstrate the accuracy and power of the
developed theory.

Wo,rk Accomplished

Asymptotlc Constructlon of Composite Plate Model

The development starts with formulatlon of 3-D amsotroplc elasticity problem in which the defor-
mation of the reference surface is expressed in terms of intrinsic 2-D variables. The VAM is then
used to rigorously split this 3-D problem into a linear 1-D analysis and a nonlinear 2-D “plate”
analysis accounting for transverse shear deformation. The through-the-thickness analysis provides
a constitutive law between the generalized, two-dimensional strains and stress resultants as well
as recovering relations to approxnmately but accurately express the 3-D displacement, strain and
stress fields in terms of plate variables calculated in the “plate” analysis. It is known that more
than one theory may exist that is asymptotically correct to a given order. This non-uniqueness is
used to cast a strain energy functional that is asymptotically correct through the second order into
a simple “Reissner-Mindlin” type plate theory. Although it is not possible in general to construct .
an asymptotically correct Reissner-Mindlin type composite plate theory, an optimization proce-

dure is used to drive the present theory as close to being asymptotically correct as possible while

maintaining the simplicity of the Reissner-Mindlin formulation. This theory is firstly formulated

analytically and reported on an ASME conference [2] and later archived in [3]. Later, for the pur-

pose to connecting with 2-D finite-element analysis code and efficiency for multilayer-analysis, a
finité-element formulation is developed and published in [4].

Asymptotlc Constructmn of Composxte Shell Model

. A rigorous and systematlc dimensional reductlon of a shell-like structure is undertaken Instead of
the transverse shear refinement we have for plates, an accurate shell model will also include the
geometry correction due to the initial curvatures of the shell structure. There are two main smatl
parameters, h/l and h/R; where h is the thickness of the shell, [ is the wavelength of in- plane de-
formation and R is the minimum radius of curvature for the shell structure. The asymptotic orders
of these two small parameters are carefully chosen so that an energy asymptotically correct up to
the first order of h/R and the second order of h/ ! has been successfully constructed, Our studies
[5, 6] show that the constructed model can predict the stress distribution through the thickness very
accurately for shall shells. lmprovement to this theory can be made to include the second order :
of h/ R so that deep shells can also be accurately modeled. A 2-D geometrically exact nonlinear
shear deformation shell theory [7] has been developed to be consistent with the Reissner-Mindlin
type model constructed. A complete set of kinematical and intrinsic equilibrium equations are
~ derived for shells uvndergomg large displacements and rotations but with small, 2-D generalized




strains. The large rotation is represented by the general finite rotation is along the normal line. It is
shown that the rotation of the frame about the normal line is not zero and that it can be expressed in
terms of other global deformation variables. It is also shown that only five equilibrium equations

can be derived in this manner because the component of virtual rotation about the normal is not
independent. :

A Thermolelastic Composite Plate Model

Composite structures are more sensitive and vulnerable to temperature change than their isotropic
counterpart because the thermal expansion coefficients of different constituents of the material are
usually dramatically different from each other resulting in high stresses due to sudden temperature
change. The analysis including thermal effects is much more involved than that for isothermal
conditions. A Reissner-Mindlin type plate model capable of performing a thermoelastic stress
analysis of laminated composite plates has been constructed by the VAM. It is shown in [8] that
although the resulting theory is of the simple Reissner-Mindlin form, it has an accuracy comparable
to a higher-order layerwise theory. The hygro effect due to moisture to composite plates can also
handled in exactly the same procedure except one has to replace the thermal expansion coefficients
with hygroscopic expansion coefficients and temperature with moisture.

A Thermopi.ezoelast_ic Composite Plate Model

A Reissner-Mindlin type model for analyzing laminated smart composite plates including piezo-
electric layers under mechanical, thermal and electric loads has been developed. This model can
analyze the one-way coupling between structure and thermal, electric field. The non- -mechanical
stress resultants due to temperature and actuation can be predlcted using this model. This theory
has been implemented into the computer program VAPAS and validated against published exact
solutions for simple problems. As reported in [9, 10], the recovered 3-D stress distribution due to
temperature, or electricity has a good agreement with the exact solutions.

A Thermoplezoelastlc Composite Shell Model

Finally, the above developed thermoplezoelastlc model for smart plates is extended to model smart
‘shells made embedded with piezoelectric layers. All the effects due to temperature, electncnty,
initial curvature and transverse shear are represented in this model. This model is also implemented
in the computer program VAPAS and a paper giving the results has been accepted for presentatlon
at the 2004 ATAA SDM conference L] ' : : :

Multibody Modeling of Shells and Membranes

The classical approach to the numencal snmulatlon of flexible multlbody systems proceeds intwo -
steps: first, the equations of motion of the system are written in a convenient form, ther. oeneral
purpose Differential Algebraic Equatlons (DAE) solvers are used to integrate thése equations in -
the time domain. General purpose DAE integrators are specifically designed for effectively dealing
with the dual differential/algebraic nature of the equations but are otherw:se unaware of the specific
features and characteristics of the equatlons being solved.




The equations governing nonlinear flexible multibody systems with shells and membranes
present very specific features. First, they are characterized by linear and rotational tensorial fields
describing kinematic (displacements, velocities) and co-kinematic (forces, momenta) quantities.
Second, ‘nonlinearities can arise from several sources: large displacements and finite rotations
(geometric nonlinearities), or nonlinear constitutive laws for the deformable components of the
system (material nonlinearities). Third, a distinguishing feature of multibody systems is the pres-
ence of joints which impose different types of kinematic constraints between the various bodies of
the system. More often than not, constraints are modeled via the Lagrange multipliers technique
that imposes the nonlinear algebraic constraints on the system. Fourth, the exact solution of the
equations of motion implies the preservation of a number of dynamic invariants, such as energy
and momenta. Fifth, when the elastic bodies of the system are modeled by means of an appro-
priate spatial discretization process, such as the finite element method, high frequency modes are
introduced in the system. Finally, when dealing with shells and membranes, the ratio of in-plane
to out-of-plane frequencies is extremely high, leading to very stiff systems. :

While standard approaches perform adequately for a number of simulations, problems can arise
when modeling flexible, nonlinear multibody systems involving shells and membranes. In this
case, robust algorithms that satisfy precise requirements should be designed for the time integration

* of such systems. A formulation of time integrators for shells and membranes was developed that
satisfies the following requirements: nonlinear unconditional stability of the scheme, a rigorous
treatment of all nonlinearities, the exact satisfaction of the constraints, and the presence of high
frequency numerical dissipation. The proof of nonlinear unconditional stability stems from two
physical characteristics of multibody systems that will be reflected in the numerical scheme: the
preservation of the total mechanical energy, and the vanishing of the work performed by constraint
forces. Numerical dissipation is obtained by letting the solution drift from the constant energy
manifold in a controlled manner m such a way that at each time step, energy can be dissipated but
not created.

A novel integration scheme for nonlinear dynamics of oeometrlcally exact shells was devel-
oped based on the mextensnble director assumption. The new algorithm is designed so as to imply
the strict decay of the system total mechanical energy at each time step, and consequently uncondi-
tional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high
frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite
element spatial formulation of shells based on mixed interpolations of strain tensorial components

- and on a two-parameter representation of director rotations. The robustness of the scheme is illus-
trated with the help of numerical examples presented at conferences [12, 13| and later pubhshed
in a paper [14]. '

Next, these algorithms were extended to deal with the complexities associated with mulubody
systems. Results were first presented at conferences [15, 16] and later published in papers [17, 18]
addressing various aspects of the problem. The modeling of cables and membranes was addressed

. in ll9|

Conclusions and Suggestions

A rigorous framework to construct accurate model for composite plates and shells has been estab- -
lished under this grant using the variational asymptotic method. Models constructed this way can




not only provide accurate 2-D constitutive model for plate or shell analysis but also a consistent
way to recover the original 3-D displacement/strain/stress fields. All the theories developed have
been implemented in the computer program VAPAS. VAPAS has been connected with DYMORE
to provide an efficient yet accurate simulation for complex aerospace systems.

More work needs to be done to verify the developed and implemented thermopiezoelastic
model for smart shells against available published results. And also the developed shell mod-
els could be improved by constructing an energy asymptotically correct up to the second order in
h/R. However, this requires significant research effort and would also require the development of
shell models capable of providing the required inputs to such models.
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Appendix D

A Geometrically Nonlinear Shear

Deformation Theory for Composite Shells

‘Wenbin Yu* and Dewey H. Hodges' |
Georgia Institute of Technology, Atlanta, Georgia 30332-0150

A geometrically nonlinear shear deformation theory has been developed for elastic shells to ac-
commodate a constitutive model suitable for composite shells when modeled as a two-dimensional
continuum. A complete set of kinematical and intrinsic equilibrium equations are derived for shells
undergoing large displacements and rotations but with small, two-dimensional, generalized strains.
The large rotation is represented by the general finite rotation of a frame embedded in the unde-
formed conﬁguratioﬁ, of which one axis is along the normal line. The unit vector along the normal
line of the undeformed reference surface is not in general normal to the deformed reference sur-
face because of transverse shear. It is shown that the rotation of the frame about the normal line
is not zero and that it can be expressed in terms of other global deformation variables. Based
on a generalized constitutive model obtained from an asymptotic dimensional reduction from the
three-dimensional energy, and in the form of a Reissner—M'indlin type theory, a set of intrinsic equi-
 librium equations and boundary conditions follow. It is shown that only five equilibrium equations
can be derived in this manner b_eéause the component of virtual rotation about the normal is not
independenf. It is shown, however, that these equilibrium equations contain terms that cannot be
- obtained without the use of all three components of the finite rotation vector.

Introduction

For an elas‘tic»three-dimens’io'na_l (3-D) continuum, there are two types of nonlinearity: geomet-
rical and physical. A theory is geometrically nonlinear if the kinematical (strain-displacement)
relations are nonlinear but the constitutive (stress-strain) relations are linear. This kind of theory
allows large displacements and rotations with the restriction that strain must be small. A physi-
cally (or materially) nonlinear theory is necessary for biological, rubber-like or inflatable structures
where the strain can,not,.be considered small, and a nonlinear constitutive law is needed to relate
the stress and strain. Although this cldssiﬁcation seems obvious and clear for a structure modeled
as a 3-D continuum, it becomes somewhat ambiguous to model dimensionally reducible structures
—.structures have one or two dimensions much smaller than the other(s) such as beams, plates and

*Post Docto‘ra’l‘Fgllow, School of Aerospace Engineering.
. TProfessor, School of Aerospace Engineering. Member, ASME. -
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shells [1] — using reduced one-dimensional (1-D) or two-dimensional (2-D) models. A nonlin-
ear constitutive law for the reduced structural model can in some circumstances be obtained from
the reduction of a geometrically nonlinear 3-D theory. For example, in the so-called Wagner or
trapeze effect [2-5], the effective torsional rigidity is increased due to axial force. This physically
nonlinear 1-D model stems from a purely geometrically nonlinear theory at the 3-D level. On the
other hand, the present paper focuses on a geometrically nonlinear analysis at the 3-D level which
becomes a geometrically nonlinear analysis at the two-dimensional 2-D as well. That is, the 2-
D generalized strain-displacement relatrons are nonlinear while the 2-D cenerahzed stress strain
lehuons turn out to be linear. _

A shell is a 3-D body with a relatively small thickness and a smooth reference surface. The
feature of the small thickness attracts researchers to simplify their analyses by reducing the original
3-D problem to a 2-D problem by taking advantage of the thinness. By comparison with the
original 3-D problem, an exact shell theory does not exist. Dimensional reduction is an inherently
approximate process. Shell theory is a very old subject, since the vibration of a bell was attempted
by Euler even before elasticity theory was well established [6]. Even so, shell theory still receives
a lot of attention from modern researchers because it is used so extensively in so many engineering
applications. Moreover, many shells are now made with advanced materials that have only recently
become available.'

Generally speaking, shell theories can be classified according to direct, derived and mixed ap- .
proaches. The direct approach, which originated with the Cosserat brothers [7], models a shell
directly as a 2-D “orientated” continuum. Naghdi [8] provided an extensive review of this kind of
approach. Although'the direct approach is elegaht and able to account for transverse and normal
strains and rotations associated with couple stresses, it nowhere connects with the fact thar a shell
is a 3-D body and thus completely isolates itself from 3-D continuum mechanics. This could be
the main reason that this approach has not been much appreciated in the engineering community.
One of the complaints of these approaches that they are difficult for numerical implementation
has been answered by Simo and his co-workers by providing an efficient formulation “free from
~ mathematical complexities and suitable for large scale computation” [9, 10]. And more recently
a similar theory was 'deVeloped by Ibrahimbegovic [11] to includé drilling rotations so that not-
so-smooth shell structures can be analyzed conveniently. However the main complaint remains
that these approaches lack a meanmrrful way to find the constitutive models “which can only be
expenenced and formulated properly in our 3-D real world” [12]. Reissner [13] developed a very
general nonlinear shell theory introducing twelve generalized strains by consrdermg the dynamics
" of stress resultants and couples on the reference surface as the basis. He gracefully avoided the

awkwardrress of finding a proper constitutive model by pointing out two possible means to estab-
: lish them. It is recommended in [13] that one could either design experiments to determine the
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constitutive constants without explicit reference to the 3-D nature of the structure or derive an ap-
propriate 2-D model from the given knowledge of the constitutive relations for the real 3-D model
of the structure. '

Derived approaches reduce the original 3-D elasticity problem into a 2-D problem to be solved

“over the reference surface Such reductions are usually carried out in one of two ways. The most

common approach is to assume a priori the distribution of 3- D quantmes through the thickness and
then to construct a 2-D strain energy per unit area by integrating the 3-D energy per unit volume
through the thickness. Remarkably, classical (also known as Kirchhoff-Love type theory), first-
order shear deformation (also known as Reissner-Mindlin type theory), higher-order, and layer-
‘wise shell theories all fall into this category, including the theories proposed by Reddy [14], for
example. Another approach is to apply an asy'mptotic method to expand all quantities into an
asymptotic series of the thickness coordinate, so that a sequence of 2-D problems can be solved -
according to the different orders. :

The mixed approach is used in [15] based on the argument that all the 3-D elastlcrty equations
except the constitutive relations are independent of the material properties, such as the kinematical
rela‘tions, equilibrium of momentum and forces. The constitutive law must be determined experi-
mentally, and hence it is avoidable 'that_ it is approximate. Libai and Simrno_nds [15] obtain exact
shell equations for the balance of momentum, heat flow and an entropy inequality from the 3-D
continuum mechanics via integration through the thickness. An analogous 2-D constitutive law is
posmlated due to the fact that even 3-D constitutive laws are inexact. | :

There is a sense in which the present approach can also be considered as mixed. The 2-D
constitutive model is obtained by the Variational Asymptotic Method (VAM) [16] such that the
2-D eneroy is as close to an asymptotic approxrmatlon of the original 3-D energy as possible
[17]. The process of constructing the constitutive model defines the reference surface and the
kinematics of this surface are geometrically exact formulated in an intrinsic format. The 2-D
equilibrium equations are obtained from the 2-D energy with the knowledge of the variations of
the generalized strains. The only approximate part of our 2-D shell theory is the constitutive law
which is not postulated but is mathematically obtained by VAM. |

| “ Shell Kinematics |

The equations of 2-D shell theory are written over the domain of the reference surface, on
which every point can be represented by a position vector r in.the undeformed configuration .an‘d
R in the deformed configuration (see Fivg 1) with respect to a fixed point O in the sp'ace A set -
of two curvrlmear coordinates, x,, are required to Iocated a pomt on the reference surface. The '
coordmates are so-called convected coordinates such that every pomt of the' conﬁouratron has the
same coordinates during the deformation. (Here and throughout the paper Latin indices assume I, ’
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. 2. 3; and Greek indices assume values 1 and 2. Dummy indices are summed over their range except

where explicitly indicated.) Without loss of generality, x,, are chosen to be the lines of curvatures
of the surface to simplify the formulation. For the purpose of representing finite rotations, an
orthonormal triad b; is introduced for the initial configuration, such that

by =a,/A. bz =Db; x by (1
where a, is the set of base vectors associated with 2, and A, are the Lamé parameters, defined as

ay =T Aaz Vaa * Ay 2)

From the differential geometry of the surface and folloWing [13] and [18] one can express the

derivatives of b; as
bi.a = Aako X bi (3)

where k, is the curvature vector measured in b; with the components
ko = |—kaz ka1 kas)T @
o |_ a2 fval No3 » :

in which kq 3 refers to out-of-plane curvatures. We note that ky, = k2; = 0 because the coordinates

are the lines of curvatures. The geodesic curvatures ko3 can be expressed in terms of the Lamé

parameters as _ -
Apo A1

- Lon =
A1 A, BT A4,

When the shell deforms, the particle that had position vector r in the undeformed state now

ki3 = (5).

has position vector R in the deformed shell. The triad b; rotates to be B;. The rotation relating
these two triads can be arbitrarily large and represented in the form of a matrix of direction cosines
C'(z4) so that . ‘ . '
B; =C;b; Ci;=B;-b; o | (6)

A definition of the 2-D' generalized strain measures is needed for the purpose of formulating
this problem in an intrinsic fprm. Following [13] and [18], they can be defined as ‘

R, = A.(Ba + €a3B3 + 2743B3) S | (7

and _
Bio = Aa(—KaB1 + KaBy + KasBy) x By - ®

where €ap are the 2-D in-plane strains, and K ;; are the curvatures of the deformed surface, which
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are the summation of curvatures of undeformed geometry k;; and curvatures introduced by the
deformation x;;, and v,3 are the transverse strains because B3 is not normal to the reference surface
after deformation. Please note that the 2-D generalized strain measures are defined by Eqs. (7) and
(8) in an intrinsic fashion, the symmetry of the inplane strain measures such that €19 = €9, does
not hold automatically. Nevertheless, one is free to set €15 = €9, i.e.

B;-R, B;-R;
A, A

&)

which is a constraint used in [17] to make the 3-D formulation unique.
At this point sufficient preliminary information has been obtained to develop a geometrically

nounlinear shell theory.

Compatnblhty Equations

It is well known that a rigid body in 3-D space has only six degrees of freedom Thus, the
kinematics of an element of the deformed shell reference surface can be expressed in terms of at
most six mdependent quantmes three measures of displacement, say u - b;, and three measures of
the rotation of B; (since the global rotation tensor C, which brings b; into B,, can be expressed '

,m terms of three mdjependent quantmes). However, we have the eleven 2-D strain measures €11,

2613, €23, 27a3, Ka3, and ko3 as defined in Egs. (7) and (8). Thus, they are not independent; there
are some compatibility equations among these eleven quantities. In [19] and [13] appropriate

- compatibility équations are derived by first enforcing the equalities

R’lg = R'zl- . (10)

and
B;12 = B2 - , - (1D

These two vector equations lead to six independent compatibility equations‘ equivalent' to a form

- of those found in [13]. These equatxons are rewritten here for convemence m the preserit notatlon
- First, from the B3 components of Eq (10), we obtain

(A22’723) (A12’>'13'),2
A Ay A1 A

(1 + 622)1112 — (1 +€n)ko = + e1a(Kay — K)) (12)

Next, from the B, components of Eq. (10) we obtain two equations for a=1 and 2, respectively, as

(Aéélz),.i _ [Ai(L+ €],
ArAy - A4,

(1 + ) Kz — €10Kps = — 2913k + 2y Ky
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. . [A2(1 + €22)] Ae :
(14 €11)Kog — €10Ky3 = A, 1_ | AIIXQ)'Q — 271392 + 2793K19 (13)

Finally, from the three components of Eq. (11) we have nine identities. However, there are only

three independent equations, given by

ALK A '
(A1K11) 0 _ (Aako1) 1 + K13K9 — k12Ko3 =0

A1 A, AlA,
Ak Ay K.
( 21/1{22)’2 ! 1311/2122)1 + K3 K11 — K21 K3 =0
A K. A K '
( 31‘212)1 - ( ;h—llz)z + K11 K — K19Kk91 =0 (14)

There are now eleven quantities which are related by six compatibility equations. This means that
these strain measures can be determined in terms of only five independent quantities — not six.

In the process of dimensional reduction of [17] to find an accurate constitutive model for com-
posite shells, the’ authors encountered the question whether one should mclude ko1 and K19 as two
different generalized strain measures. This was determined by the followmg argument. Let us
denote a new twist measure 2w = K19 + Ko;. From Eq. (12) the differ_ence between k3; and k13 can

be obtained as

K12 — K1 _ (A22y 23);1‘::12'13)2 + 612(1&'22 — Ku) + w(eu - 622) (15)

2 : . (2 + €11 + 622)

- This difference is clearly O(%) or O(%) disregarding the nonlinear terms (¢ is the order of gen-

eralized strains, h is the thickness of the shell, [ is the wavel‘ength of in-plane deformation and R
is the characteristic radius of shell). One can show that it contributes terms that are O(EE'; 1’;) or
O( ) to the strains. Clearly, such terms will not be counted in a physrcally linear theory with
only correction up to the order of h/R and (h/1)%.

Egs. (13) can be solved for the in-plane curvatures k13 and k3, and Eq. (15) can be used
to express k12 and Ky in terms of w. Now, using these expressions, one can rewrite the three
Eqs. (14) entirely in terms of the eight strain measures e’u, 2619, egg, 2913, 2723, K11, 2w, and k..
This confirms that only five independent measures of displacement and rotation are necessary to

define these strain measures as we will demonstrate conclusively below by-de'riving such measures.

Global Dlsplacement and Rotation Varlables

There is no umque choice for the global deformation variables. For this reason, the importance
(not to mention the beauty) of an mtrmsrc formulation is widely apprecrated On the other hand, for
the purpose of understandmg the displacement field more fully, for practical computational algo-
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rithims, and for easy derivation of virtual strain- dlsplacement relations, it is expedient to introduce
a suitable set of dlsplacement measures.

The displacement measures we choose are derived by expressing R in terms of r plus a dis-
placement vector so that -
R(zy,z2) = r(z1,29) + u;b; ‘ (16)

Differentiating both sides of Eq. (16) with respect to z,, and making use of Eq. (7), one can obtain
the identity
Ba + fagBa_‘}‘ 2")’0,3B3 = ba + U.i;ab,; -+ ’Uiika X bi (17)

where ( Yoa = 1 a() . The above formula allows the determination of the strain measures €,5 and
2443 in terms of C, u; and the derivatives of u;. Introducing column matrices u = |u; up uajr,
1 =1100JT.ea=[010JT, v = [e11 €12 2713)7, and 7o = €21 €22 2723) 7. we can obtain the

following identity in matrix form '
ea + Yo = C(ea + U + Z:u) : (18)

where (' is the matrix of direction cosines from Eq. (6) and k,, is defined in Eq. (4).

Rodrigues parameters [20] can be used as rotation measures to allow a compact expression of
C'. These are derived based on Euler’s theorem, which shows that any rotation can be represented
as a rotation of magnitude © about a line parallel to a unit vector e. Defining the Rodrigues
parameters p; = 2e - b; tan (§) and arranging these in a column matrix p = |p; p2 p3)7, the
matrix C' can simply be written as ‘

T ~ T
: (1 - 933) I—p+ 8- : :
C= - (19)
1+ & .
where 61. ; = —€ijk( )« Let us also denote the direction cosines of Bj by
Cyi =05 +0; 20y,

"Hodges [21] has shown that, given the third row of C, the Rodrigues parameters can be uniquely
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expressed in terms of 6; as

_ p3by — 20,
oL = 2+ 93
__p3th + 20,
2= 2406,
®3
p3 =2tan (3) @1

where p3 can be understood as a change of variables to simplify later parts of the derivation. Later
on we will discuss the meaning of ¢3 for a special case. Finally, it is noted that the three rotational
parameters §; are not independent but instead satisfy the constraint

P42+ (1+6:)=1 @

When Eq. (21) is substituted into Eq. (19), the resulting elements of C can be expressed as

tunctions of 8; and o3

(2 + 03 — 6?) cos 33 — 616, sin o3
2+ 03

(2 4 03 — 62) sin ¢z — 6,02 cos O3
2+ 03

Cl;.g = - 01 Ccos ¢3 - 92 sin (353

—(2 + 63 — 62) sin ¢3 — 6,65 cos @3

Cn=

Ciz =

Coi =
2 2 + 0
(2 + 63 — 632) cos @3 + 6,0 sin &3
Cyp =
2105
023 =91 sin ¢3 - 92 COS (,253
Ca =0,
Czy =0,

Cz3;1.+9_3' . L o 23

This representation reduces to those of {22] when consndermc small, finite rotations. There is an
apparent singularity in the present scheme when 63 = —2 (i.e., when the shell deforms in such a
way that Bj is pointed in the opposite direction of bz). This should pose no practical problem,
" however, since 6, = 92 = 0 for that condifion, and none of the kinematical felations become
infinite in the limit a asfy — —2. " ' ' '
When these expressions for the dlrectlon cosines are substituted into Eq. (18) expllmt expres-
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sions for the strain measures can be found as

2463 —67)(1 1 = kygus + k — 6,0 (u21 + ki -
€11 = (2463 —6)(1 + ua m.uﬁh 1) = 618a(ua + ki) + 6y (k11ug — us;1)| cos @3
2463 '
(2446 —92 k - -k k
L [(2+ 65 = 69)(ua + Frsur) 0182(1 + uy;1 — kizug + Kkniug) + O (knyuy — uz)| sinds — 1
2463
(246 —92 (1 0 —
[ — e ’»232'“ i*g‘3’»22U3) tPaltns — hast) — O2(uz;2 — k22u2)] cos ¢3
(246 - 02)(k - 0,0-(1 k k 1
+ [ + 03 — 68) (kasua — wrig) + 020>(1 + ua + kasur H kpows) g ) o g 1
24063 _ ]
(2+6: — 02)(uo.1 + ki3uy) — 0162(1+ up — kizua + kpu
ey = { 3 — 03)(u21 + k13 1)9+1032( 11 — kizua + krjus) + Oyt —-u3;1)] cos 83
(24 605 — 02)(1 + upg — kizuo + ki 0165(u +k u 1. .
[ 3 —607)(1 + win ﬁ132103 1u3) = 6162(u2) + kizwr) + 0y (kryun ~u3;1)_ sin é3.
_ ) + 63 — 6?2 ) Uuj.o — k);}uz) + 9192(1 -+ ug.9 + koguy + /\,22LL3) .
= I: 5 +03 (U3;-2 - k-z-zug) COS @3
(24 63 — 02)(1 + us + kaguy + kasus) — 0102(wa2 — kagua) S
[ 2+03 92(11.3;2 .kgzltg)- SN O3

=6, (1+ Uy, — ]\13LL) + ]\,11u3) + 9)(u,2 1+ ]\131[1) + (1 + 93) (u3;1 - kllul)

2oy = O (ur2 — Ivzzuz) + 09(1 + ug:p + kazuy + kapus) + (1 + 63) (uz2 — k22u2)
(24)
These expressions explicitly depend on sin ¢3 and cos ;. It is evident that one can choose ¢3 o

that e;p = €91, yielding

ny + 03(ugy + kizwg) — 63 (ur — kosue) + 616 [urg — up2 + (ku — kaa)ug — kagus — Kyguy]

tan o:
es = na + 92(161 L+ k1ius — kygug) + 03(uaie + kaous + koguy) + 0162(ur2 + ua — kasua + kizug)
(25)
where
ny = (9 + 93 [Ux 2 — U1 — 91(”32 - k22u2) + 92(“3-1 - kllul) — kyzuy — 1\723152]
ng = ( + 93)[91(’4131 - kllul) + 92(“32 - k22u2) — Uy — U2 — 2— 93 :
— kogu;y — (k22 + kn)us + R ‘ S ‘ (26)

It is now clear that once the functions u1, us, u3, 8; and 8, are known, the entire deformation is
determined. Because of this, one should expect that a variational formulatioh would yield only five
equilibrium equations — not six.

For small dlsplacement and small stram one can obtain @3 as

, (Az'uz).l - (Alul),2 |
" — N
Q3= — 24 A, - @7
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which is the angle of rotation about B3, the same as obtained in [23].

Although one can now find exact expressions for €3, 2€12, €22, 27713 and 2y»3 which are inde-
pendent of @3, such expressions are rather lengthy and are not given here. Alternatively, one could
leave ¢3 in the equations and regard Eq. (25) as a constraint. This would allow the construction of
a shell finite element which would be compatible with beam elements which have three rotational
degrees of freedom at the nodes. |

Expressions for the curvatures can be found in terms of C as

K, =—-Co.CT + Ck,CT - (28)
where ' _
I\,& = L—k02 kal ka3JT =+ l__’{a2 Kal /{aSJT (29)

Following [24], the curvature vector can also be found using Rodrigues parameters

P + Cha (30)

-

+ B_T_E
1
Using the form of C from Eqgs. (23), the curvatures become

03.4 (61 cos @3 + 05 sin ¢3) i

KRal = 01;0 COS O3 + 0‘2;& Sih @3 — 2+ 9 l‘al - kol
. 3
' 3. (0 sin &3 — 6 cos & -
Ka2 = —01.q Sin @3 + bo., cOS O3 + Os.a (61 ,)'j_ 7 2 %) + k ka2
: . Z 3
. 01,007 — 60105, - ’
Ka3 = O3:0 + W + kaS : . . ’ (31)

- where

ka?el . ka].02 )(01 Sin ¢3 —- 62 coS éB) + ka? Sin ¢3 + kal COS ¢3

for = (baa = 570+ 210,
kas = (kas — ka2l + ka16s }(6: cos @3 + B2 8in ¢3) + ka2 cOS @3 — ka1 Sino

. a2 | %] 2+€3 2+93 1 3 2 3) .aZ_ . V3 al ’3 .
ks = —ka2f1 + k182 + ka3bs . (32)

As before, @3 can be eliminated from these expressions, so that all six curvatures can be expressed
in terms of five independent quantities. Note that k3 are not independent 2-D generalized strains.

They w111 however, appear in the equlllbnum equations because of their appearance in the virtual

strain- dlsplacement relations derived later..
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2-D Constitutive Law

To complete the analysis for an elastic shell, a 2-D constitutive law is required to relate 2-
D generalized stresses and strains. As mentioned before the constitutive law can not be exact,
however, one should try to avoid introdﬁcing any unnecessary approximation in addition to the
already-approximate 3-D constitutive relations. 4
Among many approaches that have been proposed to deal with dimensional reduction, the ap-
proach in [17] stands out for its accuracy and simpliéity. In that work, a simple Reissner-Mindlin
type energy model is constructed that is as close as possible to being asymptotically correct. More-
over, the original 3-D results can be recovered accurately. The resulting model can be expressed
as
oIl = ! Ae + vTGv + 2T F (33)

where € = L€11 €19 €29 K11 Ko + Ko1 Kep)T and v = |2v13 2703]7. It is noticed that there is
only one in-plane shear strain €5 in Eq. (33). This is possible only after one uses the constraints
in Eq. (9). Moreover, the strain energy is independent of k43 so that the rotation about the normal
only appears algebraically, making it possible for it to be eliminated.

This simple constitutive model is rigorously reduced from the original 3-D model for multilayer
shells, each layer of which is made with an anisotropic material with monoclinic symmetry. The
variational asymptotic method [16] is used to guarantee the resulting 2-D shell model to yield the
best approximation to the energy stored in the original 3-D structure by discarding all the insignif-
icant contribution to the energy higher than the order of (h/l)? and h/R. The stiffness matrices
A and G obtained ihrough this process carry all the material and geometry information through
the thickness (see Eqgs. (63)'and (73) "in Ref. [17] for detailed expressions). The term containing
the column matrix F' is produced by body forces in the shell structure and tractions on the top and

_bottom surfaces, and it is very important for the recovery of the original 3-D results. Interested

readers can refer to Ref. [17] for details of constructing the model in Eq. (33) for multilayered

composite shells.

Havmg obtained the 2-D consutuuve law from 3- D elastlcny, one can derwe all the other
. reldtlons over the reference surface of the shell, a 2- D continuum. - ’

Virtual Strain Displacement Relations

In order to derive intrinsic equilibrium equations from the 2-D energy, it is necessary to express

. the variations of generalized strain measures in terms of virtual displacements and virtual rotations.
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The variation of the energy expressed in Eq. (33) can be written as

. oll oIl oIl oIl
oIl = Bery —de + — Berg ——d€12 + e 220622 + 97rs

oIl oIl oIl oIl
+ 5-,;5’)’23 + — Br 5h11 + W —dw + -8—5522 (34)

——0713

It is now obvious that one must express d€;1, - .., 0kg, in terms of virtual displacements and
rotations in order to obtain the final Euler-Lagrange equations of the energy functional in their
intrinsic form. Following Ref. [24], we introduce measures of virtual displacement and rotation
that are “compatible” with the intrinsic strain measures. For the virtual displacement, we note the

form of Eq. (18) and choose _
5q = Céu : - (35)

Similhrly, for the virtual rotation, we note the form of Eq. (28) and write

oy = —o6cct (36)

where ' is a column matrix arranged similarly as the curvature column matrix in Eq. (4) ou =
| =3, 8, 0U,)T. The bars indicate that these quantities are not necessarily the variations of

functions. Using these relations it is clear that
du=CTéq (37)

and

—~—

0C = —ouC : (38)

Let us begin with the generalized strain-displacement relationship, Eq. (18). A particular in-plane

strain element can be written as
€aB =.e£ [C(ea + Use + katt) — ea] | (39)
Takin ga straightfor&ard vari‘ativon, one obtains | |
56_0,3 = elg [JC(ea + U +‘ Z;u) + C(buq + E;Ju)] : (40)

The right hand side contains u., and du.q, which must be eliminated in order to obtain variations of
the strain that are independent df displacements. Thes‘e are needed to derive ihtrihsic equilibrium

equations.
Premultlplym0 both sides of Eq. (18) by CT, making use of Eq. (36), and ﬁnally usmg a
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property of the tilde operator that, for arbitrary column matrices Y and Z, YZ = —ZY, one can
make the first term in brackets on the righthand side independent of u.,. After all this, one obtains

6C(eq + e + ;»:u) =6CCT (e +7a) = _ﬁ(ea + Yo) = (€x + Ta) 0 (41)

An expression for the second term in brackets on the right hand side of Eq. (40) can now be
obtained by differentiating Eq. (37) with respect to z, and premultiplying by C'. This yields

—

 C(d10 + kabu) = C(CT8Y):a + Chabu = 3q,, + Koq (42)

"

Substituting Eqs. (41) and (42) into Eq. (40), one obtains an intrinsic expression for the variation
of the in-plane strain components as

Geas = €F [0q,0 + Kol + (6 +72)30)] 43)

where e} é, vanishes when o = ,3. This matrix equation can be written explicitly as four scalar

equations

den = 8¢y — K13dqy + K116q3 — 271300, + 6122)’—1;’)3

Se12 = 8qy, + K130, + K120q5 — 271300, — (1 + €11)dU;

dear = 8qy.p — K230y + k2103 — 272300, + (1 + 622)‘5133

5652 = E"’?? + Kasdgy + K3dg; — 723—5—52 — €120¢ 44)

The variations de;2 and dez; should be equal due to Eq. (9); hence, one can solve for the virtual

rotation component about Bj as

55 = 8q2,, — 8q1.9 + K130q; + K)30q; + (K12 — K21)0q3 — 271305 + 272309,
Vs 2 + €11 + €99 .

(45)

It is now possible to write the variations of all strain measures in terms of three virtual displacement -

and iwo virtual rotation compone_nts as

den = %1;1 - Kwﬁz + 1{113&3 - 2’)’13—5—1;1 + 612@3
ez = 0qyy + K230g; + K2bqs — 272300, — €120¢;
20619 = 8y + 0G0 + K130q; — Ka3bq, + 2wigy

— 271300, — 2’}’235% + (€22 — 511)3—@33 : N GO
with 8%, taken from Eq. (45).
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Let us now consider the transverse shear strains
27a3 = eg [C(ea + Ug + Kalt) — ea] 47

Following a procedure similar to the above, one can obtain the virtual strain-displacement

equation for transverse shear strains as

AsH

205 = €] [0 + Kaa + (& +72)39) @8)

Explicit expressions for the variations of the shear strain components are now easily written as

ja3 = 043.o + gaa + 6033?.5,3 - KOISB—(_Z_B | . (49)

Finially, variations of the curvatures are found. First, taking the straightforward variation of Eq. (28),

one obtains . X
P 6C.CT CLoCT

K =
* A - Aa

In order to eliminate 50_9, we differentiate Eq. (36) with respect to x,

+0Ck.CT + Ch0CT (50)

—~

50, =—0C.CT - 5CCT, : (51)

~ In order to eliminate dC'. we can use Eq. (38). Then, Eq. (50) becomes

—

Using another tilde identity YZ= Y Z — ZY') one can find the virtual strain-displacement relation

as
Ok = 00, + Kaby (33)
In explicit form S
0, — —
5/\711 = flll’l —_ I(lgé’lf)g + K120¢3
. -525 el oyl
(””\322 = A‘2‘2 + I\,230' 1= /‘u21() 3
2 .
‘ 00, Oy, - T - T - - NT - <
20w = 1 — + | — 4+ [_\ 13()1/)1 — 1\230'@02 + (I\g-_) - 1\11)0‘05‘3 34)
<12 Al ’ - ‘ ’ . ‘ ’

14 OF 23



Intrinsic Equilibrium Equations
In this section, we will make use of the virtual strain-displacement relations in the variation of
the internal strain energy in order to derive the intrinsic equilibrium equations. Here we define the

generalized forces as

oIl oIl 100
U _ N 9 iy
8611 1 8622 N22 2 8612 12
o1l oIl 1011
5—/{—1: = My s = My 3-6—— = M,
1 oIl 1 01
20ms Ql 207 @ )

To use the principle of virtual work to derive the equilibrium equations, one needs to know
the applied loads. In addition to the applied loads used in the modeling process, 7;B; at the top
surface, 3;B; at the bottom surface and body force ¢;B; [17], one can also specify appropriate
combinations of displacements, rotations (geometrical boundary conditions), running forces and
moments (natural boundary'conditions) along the boundary around the reference surface. It is
trivial to apply the geometrical boundary conditions. Although it is possible in most cases that
natural bouhdary conditions canbe derived from Newton’s law, the procedure is tedious and not
easily applied here because the physical meanings for some of the generalized forces are not clear. -
Thus, natural boundafy conditions are best derived from the principle of virtual work.

Suppose on boundary T' (see Fig. 2), we specify a force resultant N, and moment resultant
A1, along the outward normal of the boundary curve tangent to the reference surface v, N, and
AA[,,T along the tangent of the boundary curve 7, N,,g along the normal of the reference surface.
Then the principle of virtual work (strictly speaking, the prinéiple'of virtual~-displacements) can be

stated as:
' //(5H —8q;fi — 0P ama) A1 Ardrydzy—
/ (Bu32, + Nui5a, + Ny53gs + 8,58, + M,.50,)dT = 0 (56)

where f; and m,, are taken directly from [17].
- It is now possible to obtain intrinsic equilibrium equations and consistent edge conditions by
use of the principle of virtual work and the virtual strain-displacement relations derived in the
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previous section. The equilibrium equations are

(.4-21\[11)_1 [Al(le + N)],2

— Ki3(N1g — N) — KogNog + Q1 K11 + Qakor + f1 =0

AlAQ A]Ag
Ay No. Ag(ng—N)
( 1 22).2 + | L + Ko3(Ni2 + N) + KiaNuy + Qrkre + QaKoo + fo =0
:-11.42 A1A2
Ao A
( —Ql)'l —+ ( 1Q2)32 - KHNH bt I(QQIVQQ - 2wN12 =+ (I‘C12 — Klgl)N"f‘ f3 — O

A4y A Ay

(A2dm)a | (A1My)
Tid, T Ak, llten)

— Qa€12 + 27131 + 2903(N1p + N) — Mo K3 — Myp Koz +my =0
(A2M9) 1 + (A1) 9

—0(1 ,
‘41‘42 41142 Qz( +€22)
— Q112 + 2713(N12 = N) + 2723 Noo + M1 K3 + M9 Koz +my =0 (37)
where
N (Nog — \11)619 + Nia(€11 — €22) + Mookar — Myikia + Mig(K1y — Kp) (58)
’ 2 4+ €11 + €22 '
~ The associated natural boundary conditions on I are

N,, = nNy; + 203119 N12 + n2Np
N, = n1n2(7\22 — Ny) + (0] —n3)Nps — N
N,, = n?Ny + 2n1naNip + n3 Ny
Nys =n1Q1 + n2Qq | |
M, = n2M; + 2nyno Mg + njMa,
M,, = 1iyng(May — My;) + (n? — nd) My, (59)

where n; = cos ¢, ng = sm ¢, and ¢ is the angle between the outward normal of the boundary .
and I dlrectlon as shown in Fig. 2. The terms containing A stem from consistent inclusion of the
finite rotation from undeformed triad to deformed triad although the nonzero rotation about B. 3 18
expressed in terrns of other kinematical quantities. Similar terms are found in the shell equations
derived by Berdichevsky [16] where only five equilibrium equations are derived.
In a mixed formulation, A can be shown to be the Lagrange multiplier that enforces Eq. (45).

To further understand the nature of A one can undertake the following exercise: Setting P; = O
and €15 = €y, for the equilibrium equations given in’ [13] I—VlL——I—Vﬂ can be solved from Relssner s

sixth equilibrium equation. This shows that Reissner’s Nﬂgﬁﬁ is the same as our NV, and Reiss-
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ner’s -Ll}lh is the same as our N},. Finally, substitution of this sixth equation into the other five
yields the five equilibrium equations given here in Egs. (57). It is noted that Reissner’s equilib-
rium equations are derived based on the basis of Newton’s law of motion without consideration of
either constitutive law or strain-displacement relations. However, the present derivation is purely
displacement-based.v The reproduction of those equilibrium equations by the present derivation
illustrates that, as long as the formulation is geometrically exact, one can derive exact equilibrium
equations.

A few investigators have noted an apparent conflict between the symmetry of the stress resul-
tants and the satisfaction of moment equilibrium about the normal. In reality there is no conflict,
but one must be careful. We have shown herein that the triad B; can always be chosen so that
€12 = €. If this relation is enforced strongly, there is only one in-plane shear stress resultant,
N». that can be derived from the energy. In that case the physical quantity associated with the
antisymmetric part of Reissner’s in-plane stress resultants, while it is not available from the con-

stitutive law, is nevertheless available as a reactive quantity from the moment equilibrium equation

about the normal.. However, it must be stressed that the moment equilibrium equation about the -

“normal is not available from a conventional energy approach, in which the virtual displacements

and rotations must be independent.
In a somewhat similar vein, not being able to obtam the antisymmetric part of the moment stress

resultants from derivatives of the 2-D strain energy is a result of the approximate dimensional re- |

duction proéess in which it was determined, based on asymptotic considerations and geometrically

* nonlinear 3-D elasticity, that the antisymmetiic term x5 — k2; does not appear as an independent

generalized strain measure in the 2-D constitutive law with correction only to the order of h/R.
However, if a more refined theory with respect to h/ R is required, then k12 — k2 would appear as
a generalized strain in the 2-D constitutive law and a new generalized moment would be defined
based on the constitutive law. .

For practical computational schemes, equilibrium equations and boundary conditions need to
use the constitutive law to relate with the venerahzed 2-D strains. Fmally a set of kinematical
equatlons is needed. Dependmo on how this part is done, the analy51s can be completed in either
of two fundamentally different ways: a purely intrinsic form relylng on compatlblhty equations,
and a mixed form relying on explicit strain-displacement relations.

~In the intrinsic form we have five equilibrium equations, Egs. (57); six 'compatibility equations,

Egs. (12) = (14); and the eight constitutive equations — a total of 19 equations. The 19 unknowns are
the eight stress resultants, N, {,-ng, Nag, Qy, Qa, Myy, My, and Myy; and the 11 strain measures
€11, 2612, €29, Y13, 27235 K11, 2wig, and Koo, along with k)3, K3, and Ky2 — Koi. The last three strain
rieasures appear in the eduilibrium equations but not in the constitutive law. ' '

In a mixed formulation one would use the same five equilibrium equations and eight con-
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stitutive equations. One would also need a set of strain-displacement relations among the 11
generalized strain measures €11, 2€12, €22, 2713, 2723, K11, 2w, and Kgg, along with ki3, K23, and
K1s — Ko1, and the five global displacement and rotational variables uj, ug, us, 61, and 8. One
possible set of such equations is as follows: use five of Egs. (24), using either €5 or €2;; use the
six Egs. (31). There are also the two other rotational variables 63 and ¢3, which are governed
by Egs. (22) and (25), respectively. This way there are 26 equations and 26 unknowns. This
mixed formulation is capable of handling boundary conditions on 2-D stress resultants and dis-
placement/rotation variables. At least in principle, one could recover a displacement formulation
by eliminating all the unknowns except the displacement and rotation variables.

Eqs. (57) and (58) contain terms that could be disregarded because of the original assumption
of small strain. We will not undertake this simplification here, because it is out of the scope of the
preseht study to actually implement the 2-D nonlinear theory. Therefore, our equilibrium equations
and kinematical equations are geometrically exact; all approximations stem from the dimensional
reduction process used to obtain the 2-D constitutive law. |

The present work is a direct extension of [18] to treat shells. If one sets k;; = 0 and 4, = 1, all
the formulas developed here will reduce to those in [18], which indirectly verifies that derivation.

Conclusmns

A nonlmear shear-deformable shell theory has been developed to be completely compatible
with the modelmg process in [17]. The compatibility equations, kinematical relations and equi-
librium equations are derived for arbitrarily large displacements and rotations under the restriction
that the strain must be small. The resulting formulae are compared with others in the literature.
The following conclusions can be drawn from the present work:

. The variational asymptotnc method can be used to decouple the original 3-D elasticity prob-
lem of a shell into a 1-D, through-the- tthknCSS analysis [17] and a 2-D, shell analysis. The
throuOh the- thlckness analysis provides both an accurate 2- D constitutive law for the nonlin-
ear shell theory and accurate through-the-thickness recovery relations for 3-D displacement,
strain, and stress. This ‘way, an 1nt1mate relatlon between the shell theory and 3 D elasticity

is established.

2. A full ﬁmte rotatlon must be apphed to fully specify the dlsplacement field. However, since
the strain energy on which the formulation is based is independent of k43, the rotation about
the normal is not independent and can be expressed in terms of other quantities. Thus, it
can be chosen so that the two-dimensional, in-plane shear strain measures are equal. This
way all the strain measures can be expressed in terms of five independent quantities: three -
dlsplacement and two rotation measures, and only one stress resultant for in-plane shear can

be derived from the 2-D energy.
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3. Only five equilibrium equations are obtainable in a displacement-based variational formula-
tion. Moment equilibrium about the normal is satisfied implicitly. If one does not include
the full finite rotation, but rather sets the rotation about the normal equal to zéro the cor-
rect equilibrium equations cannot be obtained. This should shed some hght on the nature of
“drilling” degrees of freedom.
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Appendix E

An Asymptotic Approach for
Thermoelastic Analysis of Laminated

Composite Plates

Wenbin Yu* and Dewey H. Hodges'
Georgia Institute of Technology, Atlanta, Georgia 30332-0150

A thermoelastic model for analvzing laminated composite plates under both mechanical
and thermal loadings is constructed by the variational asymptotic method. The original
three-dimensional nonlinear thermoelasticity problem is formulated based on a set of intrinsic
variables defined on the reference plane and for arbitrary deformation of the normal line.
Then the variational asymptotic method is used to rigorously split the three-dimensional
problem into two problems: a nonlinear, two-dimensional, plate analysis over the reference
plane to obtain the global deformation and a linear analysis through the thickness to provide .
“the two-dimensional generalized constitutive law and the recovering relations to approximate
the original three-dimensional results. The nonuniqueness of asvmptotic theory correct up
to a certain order is used to cast the obtained asymptotically correct second-order free
energy into a Reissner-Mindlin type model to account for transverse shear deformation. The .
present theory is implemented into the computer program, Variational Asymptotic Plate
“and Shell Analysis (VAPAS). Results from VAPAS for several cases have been compared
with the exact thermoelasticity solutions, classical lamination theory and first-order shear-

deformation theory to demonstrate the accuracy and power of the proposed theory.

Keywords: Asymptotic series, anisotropic plates,l finite element method, strain distribution,

stress distribution, thermoelasticity

Introduction
Composite materials have found increasing applications in engineering practices due to
their superior engineering properties and improving manufacturing technology. However, the
heterogeneity and anisotropy of such materials make the traditional analysis method: used

for designing homogenedus and isotropic structures obsolete. Moreover, structures made

- *Post Doctoral Fellow, School of Aerospace Engineering. Presently, Assistant Professor, Department of-
Mechanical and Aerospace Engineering, Utah State University, Logan Utah 84322-4130.
fProfessor, School of Aerospace Engineering.



with composite materials are more sensitive and vulnerable to temperature change than
their isotropic counterpart. The reason is that the thermal expansion coefficients of different ’
constituents of the material are usually dramatically different from each other resulting in
high stresses due to sudden temperature change. The analysis including thermal effects is
much more involved than that for isothermal conditions.

Many engineering structures made with composite materials have one dimension much
smaller than the other two and can be modeled as plates. Only a few exact solutions exist for
- very idealized cases (see Savoia and Reddy (1995) and the references cited there). Researchers
are trying to develop simplified models to provide an approkimate representation for more
general cases. Within the last few decades, a tremendous research effort has been invested
in this area, and various approximate models have been proposed (VVu and Tauchert (1980);
Noor and Burton (1992); Reddy (1997); Noor and Malik (2000); Rohwer et al. (2001)).
Generally speaking, these models are derived from three-dimensional (3-D) thermoelasticity
theory. making use of the fact that the plate is thin in some sense. Although it is plausible
to consider the smallness of the thickness of plate structures. cons_trubtion of an accurate
two-dimensional (2-D) model for a 3-D body still introduces a lot of challenges. Almost all
the proposed models in the literature can give a good prediction of the global behavior of
the plate. However, they have serious difficulties in providing accurate distribﬁ_tions of the
3-D displacements, strains, and stresses through the thickness. Part of the reason is that
most models adopt ad hoc assumptions (such as having displacement or stress components
vary through the thickness according to a certain function) which violate the exact solutions.
For example, most high order theories (except for some layerwise theories such as Cho and
Averill (2000)) assume a C* continuity for the 3-D displacement field through the thickness
which in reality they are piecewise continuous. In the case of thermal loading, the prediction
of these ad hoc models become even worse, if not wrong, and the results should be examined
more cautiously. A |

It must be understood that all plate theories, no matter how involved they may appear,
are 1nherently approx1mate The apprommatlon lies in the 2-D constitutive law relating
2-D strains and stress resultants, which is a direct consequence of eliminating the thickness
coordinate from the independent variables of the governing equations of the boundary-value
problem for a plate. This sort of approximation is inevitable if one wants to take advantage
of the smallness of the thickness to simplify the analysis. It is interesting to note that the 3-D
constitutive relations are essentially approximate‘and determined by experiments. However,
this cannot be used as an excuse .‘po introduce unnecessary assumptions. For example, for
small-strain 'analysis of plates, it is reasonable to assume that the thickness, A, is small

’ cdmpared to the ivavelength of deformation of the reference surface, [. However, it is not at
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all reasonable to assume a priori some ad hoc displacement field, although that is the way
most plate theories are constructed.

In this paper, we first cast the original 3-D thermoelasticity problem in an intrinsic
form so that the theory is applicable for arbitrarily large displacement and global rotation,
subject only to the strain’s being small; see Hodges et al. (1993). Then, the Variational
Asvmptotic Method (VAM), introduced by Berdichevsky (1979), is used to split the original
nonlinear 3-D elasticity problem into a linear, one-dimensional (1-D), through-the-thickness '.
analysis and a nonlinear, 2-D, plate analysis. The through-the-thickness analysis produces
the 2-D constitutive law and non-mechanical stress resultants to be used in the 2-D plate
analysis, along with recovering relations that yield the 3-D displacement, strain and stress
fields through the thickness using results obtained from the solution of the 2-D problem. The
present work extends a simple yet accurate model developed recently for composite plates
and shells, namely Variational Asymptotic Plate and Shell Analysis (VAPAS) by Yu et al.
(2002a.b, 2003) so that thermoelastic effects can be treated in the same framework.

* Since the procedure is quite similar, the authors have chosen to repeat some formulae
and text from-their previous publications in order to make the present paper more self-
contained. The present theory has been implemented into the computer program VAPAS.
The hygro effects due to moisture can be treated in a similar manner as thermal effects.

* Thus, for simplicity of presentation, the hygro effect is not included in the formulation. It

has. however, also been implemented in VAPAS. Now, one can use VAPAS along some 2-D
plate solver (say, some finite element program such as DYMORE, Bauchau (1998)) to carry

out an accurate and efficient hygrothermoelastic analysis for composite plates.

3-D Formulation

A point in the plate can be described by its Cartesian coordinates x; (see Fig. 1), where
T, are two orthogonal lines in the reference plane and z3 is the normal coordinate. (Here and |
throughout the paper, Greek indices assume values 1 and 2 while Latin indices assume 1,

2, and 3. Repeated indices are summed over their range except where explicitly mdlcated )
Lettmor b; denote the unit vector along z; for the undeformed plate, one can then describe
the position of any material point in the undeformed configuration by its p051t10u vector 'y

from a fixed point O, such that
t(xy, T2, T3) = r(z1, T2) + T3bs ' (1)

where r is the pos"ition vector from O to the point located by z, on the reference surface.

When the reference surface of the undeformed plate coincides with its middle surface, it
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naturally follows that

,<f($1=$2’ 123)) = I‘(Il)l,l‘g) ' (2)

where the angle-brackets denote the definite integral through the thickness of the plate and
will be used throughout the paper. '

When the plate deforms, the particle that had position vector f in the undeformed state
now has position vector R in the deformed plate. The latter can be uniquely determined by
the deformation of the 3-D body. Similarly, another triad B; is introduced for the deformed
configuration. The relation between B; and b; can be specified by an arbitrarily large

rotation specified in terms of the matrix of direction cosines C(21,%2) so that

Bi = Cijbj CU = B, b) . (3)

- subject to the requirement that B; is coincident with b; when the structure is undeformed.

Now the position vector R can be represented as
R(l‘l, I, .'L‘3) = R(';l‘l, Ig) + 13B3(;’L’1, ;‘1'-3) + lL‘i('l-‘L, I. 1-'3)Bi(.731, .‘1‘2) (4)

where w; is the warping of the normal-line element. In the present work, the form of the
warping w; isnot assumed, as in most plate theories. Rather, these quantities are treated as
unknown 3-D functions and will be solved for later. Eq. (4) is six times redundant because
of the way Warping introduced. Six constraints are needed to make the formulation uniqué." ‘
The redundancy can be removed by choosing appropriate definitions of R and B;. One can
define R similarly as Eq. (2) to be the average position through the thickness, from which

it follo“s that the warping functions must satisfy the three constraints

(wi($1,$2,$3)> =0 _ (5)

- Another two constraints can be specified by taking Bj as the normal to the reference surface
. of the" deformed plate. It should be noted that this choice has nothmcr to do with the -

famous Kirchhoff hypothems. Indeed, it is only for convenience in the derivation.. In the

- Kirchhoff assumption, no local deformation of the transverse normal is allowed. On the

other hand, according to the present scheme we allow all possible deformation, classifying
all deformation other than that of classical lamination theory (CLT) as warping, which is
assumed to bé,sniall. This assumption is valid if the strain is small and if the order of the
local rotation (i.e. the rotation of the normal line due to warping) is of the order of the strain
or sniaﬂer; see Danielson (1991). - o o |

~ Based on the concept of decomposition of rotation tensor, Danielson and_Hodges (1987)
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and Danielson (1991), the Jauman-Biot-Cauchy strain components for small local rotation
are given by .
‘ 1 -
Tij = 5 (Fiy + Fi) = 0y (6)

where Fj; is the mixed-basis component of the deformation gradient tensor such that
Fij =B;- Gkgk : bj (7)

Here Gy = g% is the covariant basis vector of the deformed configuration and g* the
contravariant base vector of the undeformed configuration and g* = g = bi. One can
obtain G, with the help of the definition of so-called generalized 2-D strains similarly as
Hodges et al. (1993). given by

R,a = Ba + EaﬂBa

- Bio=(—K,3Bs x Bs + K,3B3) x B; ' (8)
where z,3 and K,3 are the 2-D generalized strains and (). a() Here one is free to set
I1a = a1, i.e. - .

B1 . R,Q = B2 . R‘l : (9)

which can serve as another constraint to specify the deformed configuration.
With the assumption that the strain is small compared to unity, which has the effect of
remov ing all the terms that are products of the warplncr and the generalized strains, one can

e\p1 ess the 3-D strain field as

I =Thw+ e+ T w; +THws (10)
where
= [ 2T'1p T 203 209 Tss)” (1)
w=|w wy wy]T | | (12)
€= len 2612620 Ky Ko+ Ky Kn|T (13)

5 OF 39



and all the operators are defined as:

[0 0 0] 1 0 0
0 0 0 01 0
0 0 0 000
Fh"—'a : Fll—
2= 0 0 00 1
0 = 0 000
I4]
0 0 2] 0 0 0
10023 0 O 000
0100 z3 O 100
Fe=001 0 0 x3 r,2=010 (14
0000 0 O 000
0000 0 O 001
0000 0 0] 0 0 0]

In the present work, we only consider one-way thermomechanical coupling and tempera-
ture change due to the deformation of the plate is negligible. Then we can use the Helmholtz
free-energy functional (Reddy (1997)) without quadratic terms involving temperature only
to carry out the analysis. The free energy per unit area (which is the same as the free energy -

of the normal-line element) can be written as
U= <% I DT - I"Da T> (15)

where T is the difference of temperature inside the structure with respect to the reference
temperature when the plate is stress free, and D is the 3-D 6 x 6 material matrix, which
consists of elements of the elasticity tensor expressed in the global coordinate system ;. «
is a 6 x 1 column matrix representing the 3-D thermal expansion coefficients. ‘These matrices
are in general fully populated. Howevér, if it is desired to model laminated composite plates
in which each lamina' exhibits a monoclinic st_metry about its own mid-plane and is rotated
about the local normial to be a layer in the composite laminated plate, then as shown in Yu
et al. (2002a), some parts of these matrices will-always vanish no matter what the layup
angle is. }

To deal with applied mechanical loads as well with thermal loads, we will at first -leave
open the existence of a potential energy and develop instead the virtual work of the applied

mechanical loads. The virtual displacement is taken as the Lagrangean variation of the
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~ of virtual work, such that

displacement field, such that

~

0R = 8qp;B; + 300, Bi x By + 6w;B; + 69, B; x w;B; (16)
\\"here the virtual dispiacement of the reference surface is givenA by

0qp; = 0u - B; \ (17)
and the virtual rotation of thg reference sﬁrface is defined such that
§B; = dy5,;B; x B, | | (18)

Since the strain is small, one may safely ignore products of the warping and the loading in
the virtual rotation term. Then, the work done through a virtual displacement due to the
applied loads 7;B; at the top surface and 3;B; at the bottom surface and body force ¢;B;

through the thickness is

O = (1 + 3; + (0:))dqp; + 0¥ g, 5 (Ta — Ba) + (T30} | + 0 (miwei + By + (oaw;)) (19)

&<

n, and

where T.,', 3;, and o; are taken to be independent of the deformation, ()* = ()|,,= B
()7 = ()lzy=—_&- By introducing column matrices 8q, 69, T, 3, and @, which are formed by

stacking the th1ee elements associated with mdexed symbols of the same names, and using
Egs. (1). (3), and (4), one may write the virtual work i in matrix form, so that

SW =8¢ f+50 m+6 (TTwt + Tw™ + (6Tw)) (20)
where
f=7+B8+(¢) :
| ’2-’(7'1 — B1) + (z3d1) (21)'
m= s B+ (mbd : |
, 0 .

-The complete statement of the problem can now be presented in terms of the principle

U-W=0 | o (22)

"In spite of the possibility of accounting for nonconservatlve forces i in the above, the problem

that governs the warping is conservative. Thus one can pose the problem that governs the
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warping as the minimization of a total potential functional
n=U+W (23)

so that
ST =0 | (29

- in which only the warping displacement is varied, subject to the constraints Eq. (5). This im-

plies that the potential of the applied mechanical loads for the functional governing warping
is given by ‘
W= —1Tut — T~ — (¢Tw) (25)

Below. for simplicity of terminology, we will refer to IT as the total potential energy, or the

total energy. V
By principle of minimum total potential energy, one can solve for the unknown warping
functions by minimizing the functional in Eq. (23) subject to the constraints of Eq. (5).
Up to this point, this is simply an alternative formulation of the original 3-D elasticity
problem. If we attempt to solve this problém directly, we will meet the same difﬁculty as
solving any full 3-D elasticity pfoblehl. Fortunately, as shown in Yu et al. (2002a,b, 2003),
the VAM can be used to calculate the 3-D warping functions asymptotically. The through-
the-thickness analysis is one dimensional and can be solved analytically. However, finite
element discretization is preferred to solve the minimization problem for the sake of dealing
with multiple layers and arbitrary monoclinic material. A 5-noded isoparametric element is
used because we need the second-order warping functions, which are piecewise, fourth-degree
polynomi-als. Discretizing the transverse normal line into 1-D finite elements, one can express

the warping field as
w(z;) = S(z3)V (21, 22) (26)

where S is the shape function and V' is the nodal value of warping field along the transverse

normal. Substituting Eq. (26) into Eq. (23), one can express the total energy in discretized

form as-
2l =VTEV + 2VT(Dje€ + D, Vit + Dui,Via)
+ €' Dece + VI Dy, Vi + V3 Dy, Va
+2(VIDye€ + V3 Diyee + V] Diy1, Vo)

—2VTay, — 270, — 2V oy, — 2Viay, +2V'L
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where L contains the load related terms such that
L=-5"Tr-5Tg—-(sT¢) (28)

The new matrix variables carry the properties of both the geometry and material:

E = ([T+S)"D[T':S]) Dy = ([[xS)T D)
D, = ([SI" D[, 8]) D, = ([T»S]" D[, S])
D.. = (I'TDr,) Dy, = ([T, S)* D[T, S])
Dui, = <[F115]TD[F125]> Dy, = <[F125]TD[F125]>
Dy = ([[,S]TDT.)  Dye={[[,S)*DI.)
“op = {[[xS)*Da T) - a.=(I'TDaT) o
ay, = ([T, S]"Da T) oy, = ([T, S]TDa T) (29)

Although the theory itself allows for an analytical representation for arbitrary temperature
distribution through the thickness, here a fourth-degree polynomial is used to approximate
the temperature distribution for each normal-line element. The discretized form of Eq. (5)
is » | '

VIHy =0 ‘ (30)

where H = (S’T S > and 9 is fhe normalized kernel matrix of E such that yTH p=1I Now

~ our problem is transformed to minimize Eq. (27) numerically, subject to the constraints in

Eq. (30).

Dimensional Reduction
To rigorously reduce the original 3-D problem to a 2-D plate problem, one must attempt
to reproduce thie energy stored in the 3-D structure in a 2-D formulation. This dimensional
reduétion can only be done approximately, and one way to-do it is by taking advantage -
of the smallness of h/l. The small parameter €, representing the order of thé‘ge'nerali'ze‘d
2-D strains € has already been taken advantage of when we derive Eq. (10) To reduce the
number of small 'paranieters in the asymptotié analysis, it is reasonable to assume that the
order of strains due to thermal loading is of tvhe‘ order . Thus, the quanﬁities of interest

assume the following orders:

eap~ htag~e oT e forop(h/l%e for plh/le mo~phlh/)e  (31)
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where u is the order of the material constants (all of which are assumed to be of the same
order). It is noted that mz = 0. _

Having assessed the orders of all the interested quantities, the VAM can be used to
mathematically perform a dimensional reduction of the 3-D problem to a series of 2-D models,
similarly as what have been done in Yu et al. (2002a,b, 2003).

The VAM requires one to find the leading terms of the functional according to the different
orders. Since only the warping is varied, the leading terms needed are all of those terms
associated with warping. For the zeroth-order approximation, these leading terms of Eq. (27)
are ‘ ' , '

oM = VTEV + 2V T Dje — 2V o, - (32)

The Euler-Lagrange equation for functional Eq. (32) subject to constraints Eq. (30) can be
obtained by usual procedure of calculus of variation with the aid of a Lagrange multiplier as
follows: .
EV + Dpee — o, = HiA (33)

Considering the properties of the kernel matrix v, one calculates the Lagrange multiplier A
as
A = ©T(Dyee — ap) (34)

Substituting Eq. (34) back into Eq. (33). we obtain

EV = (HypT — I)(Dhee — o) ' (35) -

There is a unique solution of zeroth-order warping functions and can be written as:
V="Ve+ V=V (36)

Substituting Eq. (36) back into Eq. (27), one can obtain the total energy asymptotically

correct up to the order of ue? as
oMl = €7 (VI Dpe + Dec)e + €1 (DF Ve — Vo' ai — 20) (37)

Note the quadratic terms associated with temperature —VFay is dropped due to the same

reason for Eq. (15). This 2-D free energy, Eq. (37), is the same as what is used in CLT for |

thermoelastic analysis:
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with .
A 1 -
A= (W Dre+ De) Np=act5(Vo an— DLVr) (39)

4

Although the energy of this approximation coincides with CLT, we have not used any ad hoc
kinematic assumptions such as the Kirchhoff assumption to obtain this result. Moreover,
the transverse normal strain from our zeroth-order approximation is not zero.

It is understood that our zeroth-order approximation will give the same stress results
as what is obtained from CLT, i.e., all the transverse stress components which are very
important for analyzing the failure of composite plates cannot be predicted. One must carry
out the next approximation so that those quantities can be approximately predicted. To
obtain the first-order approximation, we simply perturb the zeroth-order result, resulting in

warping functions of the form
V=VW+V | (40)

Substituting Eq. (40) back into Eq. (10) and then into Eq. .(‘27), one can obtain the leading

terms for the first-order approximation as
oIt = VIEV, + 2V Die,y + 2V Doe o + 2VT Ly + 2V L (41)
with

Dy = (Dy, — Diy,)Vo — D
D> = (D, — Dy )Vo — Dipe |
L'f = (‘th — D;{ll)VT,I + (Dh[2 - D;{IZ)VT'Q + ag, 1+ Q0 (42)

Integration by parts with respect to the in-plane coordinates is used here and hereafter
whenever it is convenient for the derivation, because the present goal is to obtain an interior
solution for the plate without consideration of boundary layer effects. |

Similarly as in the zeroth-order approximation, one can solve the first-order warping field
as

V= Vires + Visea + Vir + Vig 4 | (43)

and obtain a total energy that is asymptotically correct up to the order of u(h/ 1)%, given
by |
2l = e}TAe + eﬁBe‘l -4 26‘7;6’6,2 + e?f‘_,'De,g +2TF — 2T Fr | (44)
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where

. N . .1
B = Vy Dy, Vo + ViDy C = Vg DiyiVo + §(V1€D2 + DT V)

. . . 1 :
D=V Dp,Vo+ VD,  F=ViL— 5(D1TV1L,1 + VAL + D3 ViLa +V3Le)  (45)
with the non-mechanical lbad due to temperature

Fr =Nr + VI Dy, Vs + Vi Digiy Vras + Vi (D, + D) e

1 ' :
+ 5 (ViiLry + VisLrs + DiVira + D3 Viro)

Here the monoclinic symmetry has already been taken advantage of to obtain the asymptot-
ically correct energy in Eq. (44). The applied mechanical loads and temperature distribution
should not vary rapidly over the plate surface; otherwise the structure, although plate-like,

can not be analvzed with enough accuracy using a reduced plate model.

Transforming Into Reissner-Mindlin Model

Although Eq. (44) is asymptotically correct through the second order and straightfor-
ward use of this free energy expressidn is possible, it involves more complicated boundary
conditions than necessary since it contains derivatives of the generalized strain measures.
To obtain an energy functional that is of practical use, one can transform the present ap-
proximation into. a Reissner-Mindlin type model. We would like to state that fitting the
~ asymptotic energy into such model is just a choice, and the possibility of fitting the same
energy into other more soplliSticated plate models is under invéstigation.

In 2 Reissner-Mindlin model, there are two additional degrees of freedom, which are the
transverse shear strains. These are incorporated into the rotation of transverse normal. If
we introduce another triad B for the deformed Reissner-Mindlin plate, the definition of 2-D

strains becomes

Ry = BL +e53B) + 27a3B; |

B!, = (—K:3Bj x B} + K}3B3) x B} (47)

where the transverse shear strains are ¥ = |2713 2723)7. From the definitions in Egs. (8)
and (47), one can obtain the Rodrigues parameters corresponding to the rotation relating
B; and B}. Using the procedures listed in Hodges (1987), one can express the classical

strain' measures € in terms of the strain measures of the Reissner-Mindlin plate model (see
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Yu (2002) for the details of the derivation):

€ = R — 'Da"/.a (48)
where

00010 0]
D, =

0000 10

0000 10|
Dy=|"
““looo0o0 01
R = |e]; 2¢1y €50 Kip K +K5 KQ*QJ_T (49)

" Now one can express the energy, Eq. (44), correct to second order, in terms of strains of the .

Reissner—.\[indlin model as

2l =RTAR — 2RTAD, 70 + RIBR 1 + 2RICR 2 + RLDR

(50)
+2RTF — 2RTFr + 2¢v5 Do Ny

The generalized Reissner-Nlindlin model used in the 2-D thermoelastic analyses is of the

form :
Mz = RTAR +~TGy + 2RT Fr + 24T F, + 2RT Fr + 297 Fr, (51)

To find an equivalent Reissner model Eq. (51) for Eq. (50), one has to eliminate all partial
derivatives of the classical 2-D strain measures. The equilibrium equations are used to
achieve this purpose. From the two equilibrium equations balancing bending moments with

applied moments m, which is calculated from Eq. (21), one can obtain the following formula

G"Y. +F, + FT*; =DI(AR. + F’Ra + Frra) + {Z:} ‘ (52)
Usi.ng' Eq. >(52),‘ one éan rewritc Eq. (50) as
"2111 = RTAR +4TGy+2RTF - 2kTFT — 29T Dy Ny + U* (53)
where‘ | S :
U =RIBR, +2RCR2 + R,DR. | (9

. 13 oF 39




and

B =B+ AD,G'Df A
C=C+ AD,G'DI A
D =D+ AD,G™'D A . (55)

If we can drive U* to zero for any R, then we have found an asymptotically correct Reissner-
Mindlin plate model. For generally anisotropic plates, this term will not be zerd; but we
can minimize the error to obtain a Reissner-Mindlin model that is as close to asymptotical
correctness as possible. The accuracy of the Reissner-Mindlin model depends on how close
to zero one can drive this term of the energy.

One could proceed with the optimization at this point, but the problem will require a
least squares solution for 3 unknowns (the shear stiffness matrix G) from a linear system of 78
equations (12x12 and symmetric). This optimization problem is too rigid. The solution will
be better if we can bring more unknowns into the problem. As stated in Sutyrin and Hodges
(1996), there is no unique plate theory of a given order. One can relax the constraints in
Eq. (5) to be (w;) = const and still obtain an asymptotically correct strain energy. Since the
zeroth-order approximation gives us an asymptotic model corresponding to classical plate
theory, we only relax the constraints for the first-order approximation. This relaxation will

modify the warping field to be
—‘71 =Vier+ Vieeo + Vi + Vir + Liey + Laeo (56)
where L,. Ls consist of 24 constants. The remaining energy U* will aiso be modified to be
U* =RIBR, + 2RTCR; + 172?2‘1'372_; (57)

and

B=B+2LTD; ¢=C+(LID:+D\"Ly) D=D+2LID,  (58)
Since now we have 27 unknowns, the optimization is much more flexible. It can give us a
more optimal solution for the shear stiffness matrix G to fit the second-order, asymptoti-
cally correct energy into a Reissner—MindIhl model. In other words, here we have found the
Reissner-Mindlin model that describes as closély as possible the 2-D energy that is asymptot-
ically correct through the second order in h/l. However, the asymptotical correctness of .the
warping field to that same order can only be ascertained after obtaining another higher-order

approximation, which will be discussed in the next section.
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And after minimizing U*. the “best” total energy to be used for the 2-D plate Reissner-

Mindlin model can be expressed as:

olg = RTAR +17Gy + 2RTF — 2RT Fr — 2/ DoNr, (59)

Recovering Relations

From the above, we have obtained a Reissner-Mindlin plate model which is as close as pos-
sible to being asymptotically correct in the sense of matching the total energy. The stiffness
matrices A, G, load-related terms, and non-mechanical stress resultants can be used as input
for a plate theory derived from the total energy obtained here. The geometrically nonlinear
theory presented in Hodges et al. (1993) is an appropriate choice, but some straightforward
modification of the loading terms is required. ‘

However. while it is necessary to accurately calculate the 2-D displacement field of
* composite plates. this is not sufficient in many applications. Ultimately, the fidelity of
a reduced-order model such as this depends on how well it can predict the 3-D results in
the original 3-D problem. Hence. recovering relations should be provided to complete the
reduced-order model. By recovering relations, we mean expressions for 3-D displacement,
" strain, and stress fields in terms of 2-D quantities and x3. For validation, results o_btained
for the 3-D field variables from the reduced-order model must be compared with those of the
original 3-D model.

For an energy that is asymptotically correct ‘through the second order, we can recover the
3-D displacement, strain and stress fields only through the first order in the strict sense of
asymptotical correctness. Using Egs. (1), (3), and (4), one can recover the 3-D displacement

-field through the first order as

Cay
Usg=uga+x3 | Cap | +SVo+ SV (60) |
Csz—1

where /zq 1s the column matrix of 3-D displabements and uyy is the plate displacements.
C;; are the components of global rotation tensor from Eq. (3). And from Eq. (10), one can
recover the 3-D strain field through the first order as

[ =TWS(Vo+ V1) +Tee +T1,8Vo, + T,V (61)
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Then, one can use the inverse of 3-D Duhamel-Neumann law
oc=Dr'—DaT (62)

to obtain 3-D stresses o;;.

Since we have obtained an optimum shear stiffness matrix G, some of the recovered 3-D
results through the first order are better than classical theory and conventional first-order
deformation theory. However, for the transverse normal component of strain and stress (i.e.
33 and 033), the agreement is not satisfactory at all. Let us recall, that the Reissner-Mindlin
theory that has been constructed only ensures a good fit with the asymptotically correct 3-
D displacement field of the first order (while energy is approximated to the second order).
Thus. in order to obtain recovering relations thatare valid to the same order as the energy,
the VAM iteration needs to be applied one more time. |

Using the same procedure listed in previous section,' the second-order warping can be

obtained and expressed symbolically as -
Vo = Vareas + Vare o + Vasen + Var + Var (63)

Eq. (63) is obtained by taking the original first-order warping V; to be the result of the
first-order approximation. It is clear that V, is one order higher than V; which confirms
that V] is the first-order appfoximation. One might be tempted to use V} in the recovering
relations. However, the VAM has split the original 3-D problem into two sets of problems.
As far as recovering relations concerned, it is observed that the normal-line analysis can
at best give us an approximate shape of the distribution of 3-D results. The 2-D plate
analysis will govern the global behavior of the structure. Since V. is the warping that yields
" a Reissner-Mindlin plate model that is as close as possible to being asymptotically correct,
we should still use V; in the recovering relations instead of Vj. By doing this, we choose to
. be more consistent with Reissner-Mindlin plate model while compromising somewhat on the
asymptotical correctness of the shape of the distribution. It has been vefiﬁed by mim_grical
ekampies that this is a good choice. o | - |
Hence, we write the 3-D recovering relations for displacement through the second order

‘C31 ’ .
Usa=ua+239 Crn p+5(Vo+ Vit+Va) | _ (64)
| Cs3—1 |
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and the strain field through the second order is
[ =TaS(Vo+ Vi+Va) + Tee + T, S(Vou + V11) + TS (Voo + Vi) (65)

Again the stresses through the second order can be obtained from use of the 3-D constitutive
law, Eq. (62).

Numerical Examples

The computer program VAPAS has been extended to implement the present theory.
~ Several numerical examples are given here to vé_lidate the proposed theory and code against
the 3-D thermoelasticity solutions.

First to assess the asymptotical correctness of the proposed theory, we study a cylindrical
bending type problem‘ for an isotropic plate with E as the Young’s modulus, v Poisson’s
ratio and « thermal expansion coefficient. The plate is simply supported with width L along
x; axis (the “lateral” direction) and infinitely long along the z, axis (the “longitudinal”

direction) under the following temperature changes:

T = To(’cg)mn(‘zl) | | (66)

Let us assume the thickness of the plate is h, and the normalized thickness coordinate
¢ = x3/h, then the small parameter used in our theory is:

When there is a uniform temperature T, change through the thickness, the nontrivial dis-
placements and stresses are listed in Table 1. The exact solutions are obtained based on
Savoia and Reddy (1995) and expanded into a series in terms of § with o(*) denoting terms
asymptotically smaller than the order of *. The present theory can predict the correct re-
sults up to the second order of § with respect to the leading terms for each 3-D quantities,
‘which clearly demonstrate that our theory is asymptotlcally correct up to the second order
for this particular problem. We admit that the prediction of transverse components for this
problem is out of the power of our theory. However, this should not mislead the reader to
assume that the present theory is asyinptoticaﬂy correct up to the second order for general
cases. The authors are aware that the proposed theory can be at best asymptotically correct
up to the second order for particular cases. For general cases, however, the theory can only
‘be interpreted as a Reissner-Mindlin type theory which is closest to being asymptotically
correct. To illustrate the above statement, we provide the results for the same isotropic blate
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under a linearly distributed temperature through the thickness, assuming Ty = (77. Here
only nontrivial displacement results are listed in Table 2 which is sufficient for the aforemen-
tioned purpose. One can observe from Table 2 that there is a slight difference for the second
order prediction between the present theory and exact solution. It is interesting to note that
if one sets v equal to zero the difference disappears. Evidently some information belonging
to second order and indeed included in the asymptotically correct energy cannot be captured
in a Reissner-Mindlin type model. When we transform the asymptotically correct model into
a Reissner-Mindlin model, this information is lost.

The present theory is formulated with sufficient generality to carry out a thermoelas-
tic analysis for arbitrary composite laminated plates made with monoclinic material with
a computational cost equivalent to that of first-order shear-deformation theory (FOSDT).
Hence, before overemphasizing the loss of information in the repackaging of the model one
should determine if this loss is exhibited in numerical results. To investigate this, we will
present some numerical results for composite plates to demonstrate the advantages of our
thebry relative to CLT and FOSDT. The plate we are going to study has material properties

given by

E; = 172.4 GPa (25 x-10° psi) Er = 6.895 GPa (10° psi)
Grr = 3.447 GPa (0.5 x 10° psi) "G = 1.379 GPa (0.2 x 10° psi)
vir = 0.25 | . ur =025
or =0.139x 107/ °C or =9x107%/°C ~(68)

For the purpose of comparing with the exact .solution, we still consider cylindrical bending
type problem. In lieu of our definition of small parameter Eq. (67), even if our theory is
asymptotically correct up to the second order, we require & << 1. If we assume the thickness
is 25.4 mm and L = 254 mm, § will be approximately 0.314 which can be considered small

in our theory. Two different cases are investigated:

e case 1: nearly cross_lply, [—0.5°/89.5°] under To = T, + (T,

e case 2: nearly cross ply, [90.5°/0.5°/90.5°/0.5°] under Tp = To + (T + T+ T+ (T,
73 = f3 = Bsin (T2), 7, = fo = 0, and po = ErarT./9. ' ' '

Because thermal stresses due to temperature change are the most interesting quantities,

“we only present stress results here with mentioning that the accuracy of displacements and

.strains is similar to that of stresses. For case 1, results from VAPAS (dots in the plots),

are compared with those from CLT (dash—dotted line), FOSDT (dashed line) and the exact
solution (solid line) in Figs. 2 — 7. Note that, because the 2-D variables are eitlier sine

.18 oF 39



functions or cosine functions, o,3 and o33 are plotted at z, = L/2 and 043 at £; = L. The

results presented here are normalized as follows:

90'ij

ETaTTc (69)

i =
As one can observe from the plots, for on3 VAPAS results are much closer to the exact
solutions than CLT and FOSDT. VAPAS also does a fairly good job' for predicting the
transverse stress components which for the isotropic plate under uniform temperature change
we concluded was out of the power of VAPAS because these terms are asymptotically smaller
than the second order. One can infer that due to the special layup scheme (cross-ply) the
dominant terms of transverse stress components could now be asymptotiéally equal or larger
than the second order. Considering the smallness of ¢33 in comparison to the in-plane
components, v»;evexpect the slight shift of VAPAS results for this quantity to be tolerable for
. most engineering applications.

Finally. to demonstrate that VAPAS can handle the temperature change through the
thickness exactly up to a fourth-degree polynomial and both mechanical loads and thermal
load can be treated simultaneously, we present the results for case 2 in Figs. 8 — 13. Except
for a small shift for transverse normal stress, all the other results from VAPAS are almost on
top of the exact solutions. Careful readers may even find there is a small discontinuity for o33
which should not be the case in reality. The reason is due to that the stress results obtained by
VAPAS are calculated directly using 3-D constitutive law from the approximaté strain field.
The approximation in the strain field may cause the discontinuity for the transverse stress
components. It is worthy to emphasize that integration of the 3-D equilibrium equations
through the thickness is not used here to obtain results for the transverse stresses presented
herein, in contrast to what is usually done in CLT and FOSDT. : |

Mathematically, the accuracy of the present theory should be comparable to that of
a reduced layer-wise plate theory with assumed in-plane displacements as layer-wise cubic
polynomials of the thickness direction and transverse displacement as a layer-wise fourth-
degree polynomial. Howéver, the present theory is still an eqllivalent single-layer theory, and

the computational requirement is much less than that for layer-wise theories.

Conclusion

A Reissner-Mindlin type plate model capable of performing a thermoelastic stress analysis
of laminated composite plates has -been constructed by the variatidnal—asympfotic method..j
A general 2-D constitutive law being as close to asymptotical correctness as possible has been
obtained by solving the 1-D 'thrbugh-the—thickness analysis. The original 3-D results have
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been reproduced as accurate as possible from a Reissner-Mindlin type plate analysis. The
resulting theory is as simple and efficient as a first-order shear deformation theory (FOSDT)
while it also has an accuracy comparable to higher-order layerwise theories.

The present study distinguishes from previous work reported in.the literature at least in

the following four aspects:

1. The present formulation is in an intrinsic form which is suitable for geometrically

nonlinear plate theory as well as linear theory.

The dimensional reduction from 3-D to 2-D is carried out systematically by using

>

variational asymptotic method, which is completely different from models that rely on

the introduction of ad hoc kinematic assumptions to reduce the dimensionality.

3. To create a smooth interface with well-established 2-D solvers, the degrees of freedom of
the present model are chosen to be essentially the same as those of traditional Reissner-
Mindlin type plate theory. However, the present model is not a FOSDT. The present
theory differs from FOSDT by representing all the deformations that are purposely

- eliminated in the development of FOSDT. This is accomplished through allowing all |
possible deformation in the 3-D warping functions, which are solved in turn by the

variational-asymptotic method.

4. The presént study has treated both mechanical and thermal loading. The temperature
distribution -through the thickness can be arbitrary and is appro*ﬂmated in VAPAS
by a layerwise fourth-degree polynomial. This is more realistic and accurate than
most published models, in which the temperature is assumed to be dlstrlbuted linearly -
through the thickness of the whole plate (single-layer theories) or a layer (for layerwise

theories).

The hygro effect due to moisture to composite plates can also be handled in exactly the
same procedure excopt one has to replace the thermal expansion coefficients with hygroscopic
expansion coefficients and temperature w1th moisture. The computer program VAPAS can'
now be used along with a 2-D solver to perform an efﬁment }et accurate and detailed analysis
for hy grothermoelastic behavior for laminated compos1te plates under severe environments.
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Table 1:  3-D displacements and stresses under uniform temperature change through

the thickness

Normalized lateral displacement ( h£ a-)

Exact

(v+1) s—1  7(12C-1)(v+1) 5 , 712062 (1-2¢%) (12 —v—2)+1v-+15v+14] £3 o1
0T == L 0+ 5760(v—1) 9" +0(0%)
Present —{ibg-1_ f2C-DlEl g 4 o)
Normalized transverse displacement (mlf—a)
i T¢I —Drv(w+]) ¢ T1¢[BCT(6¢% —5) (v+ 1) =12 +14v+15 5
Exact (v+1)C+ *2“ .342(”_)1”)(" 42 4 TAEee Mol t Il 4 o(6)
=2¢(4C3—1w(v+1
Present (v+1)¢+ —-5(—%(7_)'{)(—"152 +0(6%)
Normalized lateral in-plane stress (Z4-)
.. 72(12¢% 1) 2 T3(240¢T—120€%+T) 54 | /54
Exact - 21(v-1) 0% — smso— 0 T 9(6 )
Present —1-'—:._,%1('?—_‘1_)'—1—)-52 + 0(3?)
| Normalized longitudinal in-plane stress (75‘%%)
.. 72(12C2—1)v 52 , 7(—240¢3+120¢*+1)v ¢4 od
E}\act _1 "‘ ,,24("’;1) o + 5760(11—1) ) 6 + 0(0 )
Present —1— 1‘%?5__‘1?1)_"52 + 0(8?) ,
) Normalized lateral transverse shear stress (£4%)
Exact %1—)53 + 0(d%)
Present Not available
Normalized transverse normal stress (£2)
4 4 1___1 Z . - .
Exact "—aé—qfrl—;—-of—i- o(64)
Present

Not available
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Table 2:  3-D displacements under linearly distributed temperature change through
the thickness ’ ' ‘ ‘

-Norlnalized lateral displacement (%)

) i hTia
- =C(200C2% — -
Exact —C(":I)O"l — % 25’}("“)0 + 0(0)
Cv+1) s—1  wC(20¢Z=3)(v+1) wCr(1lr 4203 4802 4140 -3) ¢ N
Present —>—-=07" - 120 0+ im0 T o(9)

Normalized transverse displacement (57~ )
Exact 251672 + £(20¢% — 1)(v + 1) + 0(d°)

: 15-2 1 2 (1104 420° +80% +14v-3) 0
Present %0 + '43(2OC -Dr+1) - 30£(I~IIUZ—T2;3+3:UQ—ISU+11) +0(d7)
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Figure 1:  Schematic of plate deformation
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Figure 2:
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Figure 3:

In—Plane Shear Stress
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Figure 4: Distribution of the 3-D stress o9 vs the thickness coordinate (case 1)
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Figure 5:

Lateral Transverse Shear Stress
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Figure 11:

Lateral Transverse Shear Stress
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Figure 12:
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Figure 13:
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Appendix F

A Simple Thermopiezoelastic Model for Composite Plates
with Accurate Stress Recoveryt

Wenbin Yu { and Dewey H. Hodges$§

Georgia Institute of Technology, Atlanta, Georgia 30332-0150

E-mail: dewey.hodgesRae.gatech.edu

Abstract. A Reissner-Mindlin type model for analyzing laminated composite plates
including piezoelectric layers under mechanical, thermal and electric loads has been
constructed by the variational asymptotic method. The present work formulates the original
nonlinear. three-dimensional, one-way coupled, thermopiezoelasticity problem allowing for
arbitrary deformation of the normal line and using a set of intrinsic variables defined on
the reference plane. The variational asymptotic method is used to rigorously split the three-
dimensional problem into two problems: a nonlinear, two-dimensional, plate analysis over the
reference plane to obtain the global deformation, and a linear analysis through the thickness
to provide both the two-dimensional generalized constitutive model and recovering relations

‘ to approximate the original three-dimensional results. The obtained asymptotically correct
second-order free energy is cast into the form of the commonly-used Reissner-Mindlin type
model to account for transverse shear deformation. The present theory is implemented into
the computer program VAPAS (Variational Asymptotic Plate and Shell Analysis). Results '
for several cases obtained from VAPAS are compared with the exact thermopiezoelasticity
solutions, classical lamination theory and first-order shear-deformation theory for the purpose
of demonstrating advantages and limitations of the proposed theory. The proposed theory can
achieve an accuracy comparable to higher-order layerwise theories at the cost of a first-order
shear deformation theory. ,

Submitted to: Smart Materials and Structures

1. Intreduction

Research on smart structures has received enormous attention in recent years [1, 2, 3, 4, 5].
Smart structures are capable of sensing and reacting to external disturbances and thus
“create the possibility of building structures that are self-monitorable and self-controllable.
Such smart structures are promising candidates to meet the demanding requirements of
| high—strengt’h; high-stiffness, and light-weight structures for modern engineering. espécially
aerospace applications. Among many possiblé candidates for actuators and sensors,

1 Presented at the 4-4th Structures, Structural Dynamics and Materials Conterence, Norfolk, Virginia, April 7 —
10, 2003.

t Post Doctoral Fellow, School of Aerospace Engineering.
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Simple Thermopiezoelastic Model for Composite Plates _ 2

piezoelectric materials receive the most attention. One reason for this preference is that
piezoelectric materials can directly relate electrical signals to strains in the material and vice
versa. Thus, they can be used both as actuators and sensors. Moreover, in most cases,
piezoelectric materials are used along with- tailored anisotropic materials to maximize the
intelligence of a smart structure. While most research has been focused on the behavior of
piezéelectric structures under isothermal conditions, an increasing effort has been directed to
address thermal-piezoelectric-mechanical response [6, 7, 8].

Many engineering smart structures have one dimension much smaller than the other‘
two and can be modeled as plates if there are no initial curvatures associated with the plane
formed by the two large dimensions. The present capability of analyzing thermopiezoelastic
behavior of smart plates is limited. The mathematical models are generally derived from
three-dimensional (3-D) elasticity theory, making use of the fact that the thickness is small in
some sense. Most analyses prevailing in the literature are so-called ad hoc theories, which
can be generally classified as Classical Lamination Theory (CLT) [9], First-Order Shear
Deformation Theory (FOSDT) [10], Higher-Order Theory [8] and Layerwise Theory [11].
Layerwise theory can produce reasonable results at the cost of complex models and expensive
computation. All the other ad hoc approaches are doomed to fail, éspecially for stress
prediction through the thickness, even for shells of moderate thickness. The reason is that
these theories assume the displacements to be C* functions, while in fact the displacement
field of a layered plate may have discontinuous derivatives through the thickness.

From a mathematical point of view, the approximation in the analysis stems from
elimination of the thickness coordinate from the independent variables of the governing
equations of motion for the plate structure. This sort of approximation is inevitable if one
wants to take advantage of the smallness of the thickness to simplify the analysis. However,
other approximations that are not absolutely necesSary should be avoided. For example,
for small-strain analysis of plates, it is reasonable to assume that the thickness, h, is small
compared to the wavelength of deformatnon of the reference plane, [. However, it is not at all
reasonable to assume a priori some ad hoc dlsplacement field, although that is the way most
existing plate theories have been constructed. '

- A simple and accurate model of composite plates and shells, namely, Variational
Asymptotic Plate and Shell An.alysi{sA(VAPAS) {12, 13, 14, 15], was developed recently.
VAPAS starts with formulation of the 3-D anisotropié elasticity problem in which the
deformation of the reference plane is expressed in terms of intrinsic two-dimensional (2-D)
variables. The intrinsic formulation alloWs the body to undergo arbitrarily large displacements

- and global rotations subject only to the restriction that the generalized 2-D strains are small.

The Variational Asymptotic Method (VAM) [16] is then used to systematically reduce the -
dimensionality of the problem by taking advantage of the small parameters inherent in the
problem. The original nonlinear 3- D problem is thus mathematically split into a linear one-
dimensional (l-D) through- _the-thickness analysis and a nonlinear 2-D -plate/shell analysns
accounting for transverse shear deformation. The through-the-thickness an_alysisb is solved
by finite element method and provides a constitutive model between the generalized, 2-D
strains and stress resultants as well as recovery relations to accurately approximate the 3-D
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displacement, strain and stress fields in terms of 2-D variables calculated in the 2-D plate/shell
analysis. Numerical examples presented in previous works [12, 13, 14, 15] have demonstrated
for mechanical and thermal loading that although the resulting theory is as simple as a single-
layer FOSDT, the recovered 3-D displacement, strain and stress results have an accuracy
comparable to that of higher-order, layer-wise theories with many more degrees of freedom.
The present work extends VAPAS so that the thermopiezoelastic effects of smart plates
can be treated in the same framework. Because the procedure is quite similar, the authors
have chosen to repeat some formulae and text from their previous publications in order to
make the present paper more self-contained. The present theory has been implemented into
the computer program VAPAS and now one can use this program along with some 2-D
plate solver (e.g., a standard plate finite element in commercial finite element software or
in a flexible multi-body code such as DYMORE [17]) to carry out an accurate and efficient
thermopiezoelastic analysis for smart composite plates made with piezoelectric material.

2. 3-D Formulation _

A point in the plate can be described by its Cartesian coordinates x; (see Figure 1), where
I, are two orthogonal lines in the reference plane and r3 is the normal coordinate. (Here
and throughout the paper, Greek indices assume values 1 and 2 while Latin indices assume 1,
2, and 3. Repeated indices are summed over their range except where explicitly indicated.)
Letting b; denote the unit vector along 2; for the undeformed plate, one can then describe the
position of any material point in the undeformed configuration by its position vector  from a
fixed point O, such that

(21, Tg, 3) = r(z1,22) + Z3b3 (D
where r is the position vector from O to the point located by z, on the reference plane.

When the reference plane of the undeformed plate coincides with its middle plane, it naturally
follows that -

(F(z1, T2, 23)) = r(Z1, Z2) ' ' (2)
where the angle-brackets denote the definite integral through the thickness of the plate and
will be used throughout the rest of the development. '

When the plate deforms, the particle that had position vector  in the undeformed state
now has position vector R in the deformed plate. The latter can be uniquely determined by
the deformation of the 3-D body. Analogous to b; for the undeformed state, another triad B;
is introduced for the deformed configuration. The relation between B; and b; can be specified
by an arbltrarlly large rotation specnﬁed in terms of the matrix of direction cosines C(z1, ;)
so that

B,=Cyb; C;=Bi'b; =~ | | 3)

subject to the requirement that B; is coincident with b; when the structure is undeformed.
Now the position vector R can be re presented as

R(l‘l,xz,«’va) = R(xz1, T2) + z3By(21, 22) + wi(z1, 22, 23)Bi(z1, 22) 4
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Undeformed State " Deformed State

w,(x,%,;%,)B,(x,,X,)

Figure 1. Schematic of plate deformation

where w; is the warping of the normal-line element. In the present work, the form of the
warping w; is not assumed, as in most plate theories. Rather, these quantities are treated
as unknown 3-D functions and will be solved for later. Equation (4) is six times redundant
because of the way warping introduced. Six constraints are needed to make the formulation
unique. The redundancy can be removed by choosing appropriate definitions of R and B;.
One can define R similarly as Equation (2) to be the average position through the thickness,
from which it follows that the warping functions must satisfy the three constraints '

(wi(zy, 2, 23)) =0 ‘ ‘ (&)
Another two constraints can be specified by taking B as the normal to the reference plane of
the deformed plate. It should be noted that this choice has nothing to do with the Kirchhoff
hypothesis. Indeed, it is only for convenience in the derivation. In the Kirchhoff assumption,
no local deformation of the transverse normal is allowed. However, according to the present

scheme we allow all poésible deformation, classifying all deformation other than that of
classical lamination theory (CLT) as warping, which is assumed to be small. This assumption
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is valid if the strain is small and if the local rotation (i.e. the rotation of the normal line caused
by warping) is no larger than the order of the strain [18].

Based on the concept of decomposition of rotation tensor [19, 18], the Jauman-Biot-
Cauchy strain components for small local rotation are given by

1
5 (B + Fyi) = & 6)
where F}; is the mixed-basis component of the deformation gradient tensor such that :
Ej = Bi . Gkgk . bj : (7)
Here
R
G
k= 81, k

is the covariant basis vector of the deformed configuration and g* the contravariant base vector
of the undeformed configuration and g* = g = by. One can obtain Gy, with the help of the
definition of so-called generalized 2-D strains similarly as [20], given by
R, =B, +:.3B3 (8)
lo—( I\OJB3XB3+I(Q3B3)XB _ » » (9)
where 2,3 and K3 are the 2-D generalized strains and comma denotes the differentiation
with respect to the coordinates.. Here one is free to set €12 = €9y, i.e.
B1 . R‘2 = B2 . R,l . (10)

which can serve as another constraint to specify the deformed configuration.

~ With the assumption that the strain is small compared to unity, which has the effect of
removing all the terms that are products of the warping and the generalized strains, one can
express the 3-D strain field as

'=Thw -I-_FEE +Tywi+Tpwe (1)

where
= [y 2Ty Ty 2Ty3 2Ty Tag)” ‘ (12)
w=|w w ws]T o , : o (13)
€= |en 2e12 €00 K1y Kio + Ko K22JT (14)
and all the operators are defined as: '
[0 0 0] [1 0 0]
0o 0.0 010
0o 0 O 000 -
Ly 2 0 0 Pe=109 01 (13)
0 = 0 000
0 0 = 000
L 3 J L B
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(1002 0 0] 000
010 0 23 O 100
001 0 0 z 010
F€= ' = .
0000 0 0] ™ {000 (16)
0000 O O 0 01
0000 0 0| 000

In the present work, we only study the actuated effect caused by applied thermal or
electrical loads, which means there is only one-way thermopiezoelastic coupling. The changes
of temperature and electrical fields caused by deformation of the plate are negligible, and the
interactions between temperature and electric field are not considered either. Then we can use
the Gibbs free-energy function [21] without the quadratic terms involving temperature and/or
electric field to carry out the analysis. The free energy per unit area (which is the same as the
free energy of the normal-line element) can be written as

U= <% rTDr-rTDaT—FTDd5> (17)

where T is the difference of temperature inside the structure with respect to the reference
temperature when the plate is stress free; & is the electric field vector; D is the 3-D 6x6
material matrix, which consists of elements of the elasticity tensor expressed in the global
coordinate system x;; o is a 6x1 column matrix representing the 3-D thermal expansion
coefficients; and d is a 6x3 matrix representing the 3-D strain-piezoelectric coefficients.
These matrices are in general fully populated. However, if it is desired to model laminated
composite plates in which each lamina exhibits a monoclinic symmetry about its own mid-
plane and is rotated about the local normal to be a layer in the composite laminated plate,
some parts of D will always vanish [12] no matter what the layup angle is, and o and d will
assume the following forms:

o = [_O.‘]l 2&12‘(122 00 0133JTV (18)
F 0 0 d’113' ]
0 0 - 2dj93
0 0 dys
¢= 2dy31 2di3p O u9)
2dy3; 2dy; O
L 0 0 d333 ]

To deal with applied _mechimical loads, we will at first leave open the existence of a
potential energy and develop instead the virtual work of the applied mechanical loads. The
virtual displacement is taken as the Lagrangean variation of the displacement field, such that

R = 8q,B; + 2339 3, B; X By + 6w;B; + 59 5,B; x w;B; (20)
where the virtual displacement of the reference plane is given by -
8qp; = 6u - B; - . . @)
and the virtual rotation of the reference plane is defined such that
| §B; = 595,B; x B, | | 22)




Simple Thermopiezoelastic Model for Composite Plates 7

Since the strain is small, one may safely ignore products of the warping and the loading in the
virtual rotation term. Then, the work done through a virtual displacement by the applied loads
7;B; at the top surface and 3;B; at the bottom surface and by the body force ¢;B; through the
thickness is

— — = |h .
oW = (1 +3;+(4:))0gp; +6¥p, [5 (Ta = Ba) + (13%)] +6 (rawf + Bwp + (piw:))(23)
where 7;, 3, and ¢; are taken to be independent of the deformation, ()* = () |13__ and

()™ = Olas= & . By mtroducmc column matrices dq, 6%, 7, 3, and ¢, which are formed by

stacking the three elements associated with indexed symbols of the same names, and using
Equations (1), (3), and (4), one may write the virtual work in matrix form, so that

SW =3¢ f+3d m+6 (TT‘UJ.+ + 3w+ <¢T‘u’>) 24)
where
f=17+3+(9)
2m = 31) + (x30) | (25)
m = { 5(r — 52) + (z3¢2) |
0

The complete statement of the problem can now be presented in terms of the principle of
virtual work, such that

SU—-0W =0 (26)

In spite of the possibility of accounting for nonconservative forces in the above, the problem
that governs the warping is conservative when 7;, 3;, and ¢; are taken to be independent of the
deformation. Thus, one can pose the problem that governs the warping as the minimization
of a total potential functional

D=U+Ww | 27
so that
STL = 0 - 28)

in which only the warping displacement is varied, subject to the constraints Equatlon (5.
This implies that the potential of the applied mechanical loads for the functional governing
warping is given by

W = —TT'LU+F—— 8Tw™ - <¢Tw> - (29)

By the principle of minimum total potential energy, one can solve for the unknown warping
functions by minimizing the functional in Equation (27) subject to the constraints of Equation
" (5). Up to this point, this is simply an alternative formulation of the original 3-D elasticity
problem. If we attempt to solve this problem directly, we will meet the same difficulty as
solving any full 3-D elasticity problem. Fortunately, the VAM can be used to calculate
the 3-D warping functions asymptotically. Although through-the- thickness analysis is one
dlmensmnal and can be solved analytically [12], we prefer to use finite element discretization
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to solve the minimization problem for the sake of dealing with multiple layers and arbitrary
monoclinic material, and connecting with any 2-D standard plate solver which is normally
implemented using finite element method. A 5-noded isoparametric element is used because
we need the second-order warping functions for the purpose of recovering the original 3-D
fields up to the second order of h/l. These second-order warping functions are piecewise,
fourth-degree polynomials as shown in [12]. Discretizing the transverse normal line into 1-D
finite elements, one can express the warping field as

w(z;) = S(z3)V (21, z2) | . (30)
where S is the shape function and V' is the nodal value of warping field along the transverse

normal. Substituting Equation (30) into Equation (27), one can express the total energy in
discretized form as

2l = VTEV + 2VT(Dpee + Dy, V) + Dy, V)
+ €' Dece + VI Dy, Vi + Vi D, Vo
+ 2(VTD1156 + VTDzzef + VlTszV:Q)
—2VTay, — 2e7ac — ')V1 o, — 2V:2Ta,2

—2VTE, - 26TE, — 2VTE, — 2vEE, +2VTL @31
where L contains the load related terms such that ’
L=-5T7-5T3-(57¢) , Y
" The new matrix variables carry the properties of both the geometry and material:
E = ([T4SI"D[TwS]) Dae =([TxS]"DT.)
D, = ([CxS]"D[T,,S]) Dy, = ([T4S|" D[, S])
D = (ITDT) | Dy, = ([T, S D[Ty, S])
Dy, = ([0 S)" DT, S}) Dy, = ([T, S]TDIT,, S)
Dy, = ([, ST D) . Dy,e = ([0, S]"DT.)
ap = <[FhS]TDa T> a. = .<1"TDa T>
.= (I[ry S Da T) | _al, = ([r,S]" Da T>
= <[FhS]TD d£) =(I"Dd€)
&, = ([T, S'DdE) =([,S"DdEYy (33)

Although the theory itself allows for an exact representation for arbitrary temperature and
electric field distribution through the thickness, here fourth-degree polynomials are used
to approximate both distributions for each normal-line element. The discretized form of

Equation (5) i is . _
VITHY =0 ’ . (34)
where H = <ST S> and v is the normalized kernel matrix of E such that yTHy = I. Now

our problem is transformed to minimize Equation (31) numerically, subject to the constraints
in Equation (34).
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3. Dimensional Reduction

To rigorously reduce the original 3-D problem to a 2-D plate problem, one must attempt to
reproduce the energy stored in the 3-D structure in a 2-D formulation. This dimensional
reduction can only be done approximately, and one way to do it is by taking advantage of the
smallness of h/l. The small parameter ¢, representing the order of the generalized 2-D strains
€ has already béen taken advantage of when we derive Equation (11). To reduce the number of
small parameters in the asymptotic analysis, it is reasonable to assume that the strains caused
by temperature and electricity are of the order €. Thus, the quantities of interest assume the
following orders:

€~ hkag~e  fa~ p(h/D)?e  for~ u(h/l)e
Mg ~ ph(h/l)e aT ~¢ d€ ~¢ - (3Y)
where 1 is the order of the elastic constants (all of which are assumed to be of the same order).
Having assessed the orders of all the interested quantities, the VAM can be used to
mathematically pérform a dimensional reduction of the 3-D problem to a series of 2-D models.
This method requires one to find the leading terms of the functional according to the different
orders. Since only the warping is varied, the leading terms needed are all of those terms

associated with warping. For the zeroth-order approximation, these leading terms of Equation
(31) are

oIy = VTEV + 2VT Dy e — 2V 7Ta), — 2V7E, (36)

The zeroth-order warping functions which minimize the above functional subject to
constraints Equation (34) can be obtained by usual procedure of calculus of variation as:

V= Voe +Vr+Ve=1 37

Substituting Equation (37) back into Equation (31), one can obtain the total energy

asymptotically correct up to the order of uc? as

9Ty = T Ae — 2T Ny — 26T, (38)
with
A= (%TDhe + Dse)
1 .7
NT = X + §(Vo o — D}T{EVT)
Ne =&+ 5(% & ~ DRV:) - (39)

Although the energy of this approximation coincides with the classical plate theories for
thermopiezoelastic analysis, we have not used any ad hoc kinematic assumptions such as
the Kirchhoff assumpﬁdn to obtain this result. Moreover, the transverse normal strain from
our zeroth-order approximation is not zero. |

It is understood that our zeroth-order approximation will give the same stress results as

-what is obtained from CLT, i.e., all the transverse stress components which are very impbrtant

for analyzing the failure of composite plates cannot be predicted. One must carry out the
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next approximation so that those quantities can be approximately predicted. To obtain the
first-order approximation, we simply perturb the zeroth-order result, such that

V=W+W (40)

Stlbstituting Equation (40) back into Equation (1 1) and then into Equation (31), one can obtain
the leading terms for the first-order approximation as

201} = VT EVi + 2V Dyey + 2V Daep + 2VT Ly + 2V L + 2VTL  (41)
with | ' | | | |

L= (Dhll — D}EI)VT,I + (Dhlz - D;{IZ)VT,Q +oau1+ope

Le = (Dh_ll - DZ}I)VE,I + (D, — D,E2)Vg,2 +éha+ Ela.2

Dy = (Dw, — D5, )Vo — Dy,

Dy = (D, ~ DIy )V — D “2)

Integration by parts with respect to the in-plane coordinates is used here and hereafter
whenever it is convenient for the derivation, because the present goal is to obtain an interior
solution for the plate without consideration of edge effects. Note that the treatment of edge
effects is itself a very important problem to tackle, but it is outside the scope of the present
work. :

Similarly as in the zeroth-order approximation, one can solve the first-order warping field
as

_ Vi =Vieq + Vigep + Vir + Vi + VL (43)
and obtain a total energy that is asymptotically correct up to the order of u(h/l)2¢, given by
oI, = T Ae + c’TlBerl + 26?;06__2 + EgDG,Q —2TF — 2¢T Fr — 2¢T Fy 44)
where
B =VIDy, Vo + VEID,
C =VID,,Vo+ %(foDz + DTvy)
D = Vi Dy, Vo + ViEDy
F=VIL~ (D Visa + VELy + DVizo + ViiLo) 45)
with the non-mechanical load due to temperature
Fr = Ny + V' Dy, Virn + V& Diyiy Vo + VE(Diy, + D) Vrae (46)
+ %(Vfl‘LT,l +Vi5Lra + DT Viz, + DI Vir,)
and the non-mechanical load due to electric field .
Fg = Ng — VI Dp, Ve — VD, Veo— Da, Vg1 — Da, Ve o
+ Vi Dy Vear + V& Digiy Ve + Vi (D, + Dif1,)Ve2

1 .
+ i(VI{L,g,l + ViyLes + DIVig, + DIVigs) (47).
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Here the monoclinic symmetry has already been used to obtain the asymptotically correct
energy in Equation (44). The applied mechanical loads, temperature and electric field should
not vary rapidly over the plate surface, so that F', Fr and F¢ will be of sufficiently high order
to meet the requirement of asymptotical correctness.

4. Transforming into a Reissner-Mindlin Model

Although Equation (44) is asymptotically correct through the second order and use of this
free energy expression is possible, it involves more complicated boundary conditions than
necessary since it contains derivatives of the generalized strain measures. To obtain an energy
functional that is of practical use, one can transform the present approximation into a Reissner-
Mindlin type model. It should be noted that fitting the asymptotic energy into such model
is just one possible choice, and the possibility of fitting the same energy into other more
sophisticated 2-D plate models exists.

In a Reissner-Mindlin model, there are two additional degrees of freedom, which are
the transverse shear strains. These are incorporated into the rotation of transverse normal. If
we introduce another triad B} for the deformed Reissner-Mindlin plate, the definition of 2-D
strains becomes

R, =B, +¢,;3B5 + 27.3B3 _
B, = (-K3Bj x B} + K2;B3) x B} (48)

where the transverse shear strains are v = [2713 2723J . One can express the classical strain
measures € in terms of the strain measures of the Reissner-Mindlin plate model as

¢=R—Dava . (49)
where
' T
5 _[000100
'“loo00010
b _[000010 g
21000001 o
R = |e]; 2l €5 Ki) Kip+K5 K37 (50)

Now one can express the energy, Equation (44), correct to second order, in terms of strains of
the Reissner-Mindlin model as
2l = RTAR — 2RT ADoy, + RIBR 1 + 2RICR ; + RLDR
— 2RTF — 2R Fr + 292, Do Ny |
— 2RTF; + 242 D, N; | (51)
The generalized Reissner-Mindlin model used in the 2-D thermopiezoelastic analysis is of the

form

2lr = RTAR — 2RT (Fr + Frr + Fer) +7TGy— 277 (F, + Fr+F,)(52)
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To find an equivalent Reissner-Mindlin model Equation (52) for Equation (51), one has
to eliminate all partial derivatives of the classical 2-D strain measures. The equilibrium
equations are used to achieve this purpose. From the two equilibrium equations balancing
bending moments with applied moments m, which is calculated from Equation (25), one can
obtain the following formula B ‘

DZ,(AR.a "‘F’R,a ‘FT’R,a "FE’R,,Q) = G’Y"‘ F-y "‘FT'y - Fé‘—y" {m;} (53)

'Using Equation (535, one can rewrite Equation (51) as
| o0l = RTAR+YTGy—2RT (F+Fr+Fg)—29" Do Nr.o — 29T Do Ne o +U*(54)
where
U*=RIBR,+2RICR, + R,DR (55)
and v ' |
B=B+AD:G'D{ A
C=C+ADG7'D] A
D =D+ AD,G™'DJ A (56)

If we can drive U* to zero for any R, then we have found an asymptotically correct Reissner-
Mindlin plate model. For generally anisotrbpic plates, however, this term cannot be driven
to zero; but we can minimize the error to obtain a Reissner-Mindlin model that is as close to
asymptotical correctness as possible. The accuracy of the Reissner-Mindlin model depends
on how close to zero one can drive this term of the energy. :

One could proceed with the optimization at this point, but the problem will require a
least squares solution for 3 unknowns (elements of the shear stiffness matrix G) from a
linear system of 78 equations (12x12 and symmetric), a very rigid optimization problem.
The solution will be better if we can bring more unknowns into the problem. There is no
unique plate theory of a given order [22]. One can relax the constraints in Equation (5) to
be (w;) = constant and still obtain an asymptotically correct strain energy. Since the zeroth-
order approximation gives us an asympto‘tic model corresponding to classical plate theory, we
only relax the constraints for the first-order approximation. This relaxation will modify the
warping field to be '

Vi = Vi€ + Visea + Vip + Vit + Vig + Lie1 + Loe o (57)
where Ly, L, consist of 24 constants. The remaining energy U* will also be modified to be
U* = REBR, +2RECR, + REDR, | (58)
and |
B =B +2LTD,
> =C + (LTDy + D" Ly) | | (59)
H =D +2Li Dy |
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Since now we have 27 unknowns, the optimization is much more flexible. It can give us a more
optimal solution for the shear stiffness matrix G to fit the second-order, asymptotically-correct .
energy into a Reissner-Mindlin model. In other words, when one carries out the optimization
as described here, one finds the Reissner-Mindlin model that describes as closely as possible
the 2-D energy that is asymptotically correct through the second order in h/l. However, the
asymptotical correctness of the warping field to that same order can only be ascertained after
obtaining another higher-order approximation, which will be discussed in the next section.

After minimizing U*, the “best” total energy to be used for the 2-D plate Reissn‘er—‘
Mindlin model for the purposes of thermopiezoelastic analysis can be expressed as:

AMp = RTAR —2RT(F + Fr + Fg) + v Gy — 27TDQ(NT,; + Ne o) (60)

5. Recovering Relations

From the above, we have obtained a Reissner-Mindlin plate model which is as close as
possible to being asymptotically correct in the sense of matching the total energy. The stiffness
matrices A, G, load-related terms and non-mechanical stress resultants can be used as input
for a plate theory derived from the total energy obtained here. The nonlinear theory presented
in [20] is an appropriate choice, but some modification of the loading terms is required. |

However, while it is necessary to accurately calculate the 2-D displacement field of the
plates, this is not sufficient in many applications. Ultimately, the fidelity of a reduced-order
model such as this depends on how well it can predict the 3-D results in the original 3-
D problem. Hence, recovering relations should be provided to complete the reduced-order
model. By recovering relations, we mean expressions for 3-D displacement, strain, and stress
fields in terms of 2-D quantities and 23. For validation, results obtained for the 3-D field
variables from the reduced-order model must be compared with those of the original 3-D
model. .

For an eﬁergy that is asymptotically correct through the second order, we can recover
the 3-D displacement, strain and stress fields only through the first order in a strict sense
- of asymptotical correctness. Using Equations (1), (3), and (4), one can recover the 3-D
displacement field through the first order as

Cs1 A
Usg = ugg + 23 Csa + SV + SV, A (61)
| Ciz — 1
where Usy is the column matrix of 3-D displacements and uyq is the plate displacements. C;;
are the components of global rotation tensor from Equation (3). From Equation (11), one can
recover the 3-D strain field through the first order as ’ |

I =T,S(Vo+ V1) + e+, SVor +T,SVo2 - (62)
Then, one can use the 3-D constitutive relation '

oc=DI'-DaT~-Dd¢& » (63)

to obtain 3-D stresses ;.
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Since we have obtdined an optimum shear stiffness matrix G, some of the recovered
3-D results through the first order are better than classical theory and conventional FOSDT.
(Note that conventional FOSDT has no rational way to find the shear stiffness coefficients.)
However, for the transverse normal component of strain and stress (i.e. I'33 and 033), it can be
shown that the agreement is not satisfactory. Let us recall that the Reissner-Mindlin theory that
has been constructed only ensures a good fit with the asymptotically correct 3-D displacement
field of the first order (while energy is approximated to the second order). Thus, in order to
obtain recovering relations that are valid to the same order as the energy, the VAM iteration
needs to be applied one more time. :

Using the same procedure listed in previous section, the second-order warping can be
obtained and expressed symbolically as

Vo = Voi€e11 + Vage 1o + Vage oo + Vo + Vor + Vae - (64)

Equation (64) is obtained by taking the original first-order warping V) to be the result of the
first-order approximation. It is clear that V; is one order higher than V; which confirms that V;
is the first-order approximation. One might be tempted to use V; in the recovering relations.
However, the VAM has split the original 3-D problem into two sets of problems. As far as
recovering relations concerned, it is observed that the normal-line analysis can at best give us
an approximate shape of the distribution of 3-D results. The 2-D plate analysis will govern
the global behavior of the structure. Since V; is the warping that yields a Reissner-Mindlin
plate model that is as close as possible to being asymptotically correct, we should still use V'
in the recovering relations instead of 1. By doing this, we choose to be more consistent with
Reissner-Mindlin plate model while compromising somewhat on the asymptotical correctness
of the shape of the distribution. It has been verified by numerical examples that this is a good
choice. o
Hence, we write the 3-D recovering relations for displacement through the second order
as '
Ca
Usg=usa+23¢ Cz ¢ +S(Vo+Vy+Vh) (65)
033 - 1 '

and the strain field through the second order is

I'= I‘hS(Vb -+ 71 <+ VQ) +Tee+ I‘ZIS(V(),] + 71,1) + Flzs( ‘6,2 <+ 71,2) (66)

Again the stresses through the second order can be obtained from the 3-D constitutive law,
Equation (63).

6. Numerical Examples

The cbmputer program VAPAS has been extended to implement the present theory. Several
numerical examples are given here to validate the proposed theory and code against the 3-D
thermopiezoelasticity solutions with one-way coupling that are specialized from [23].

First to assess the asymptotical correctness of the proposed theory, we study a cylindrical
bending type problem for a single-layer plate made with a piezoelectric material with isotropic
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mechanical properties (E as the Young’s modulus, v Poisson’s ratio) and d as the strain-
piezoelectric constants in the both directions of the reference plane. The plate is simply
supported with width L along x, axis (the “lateral” direction) and infinitely long along
the 1, axis .(the “longitudinal” direction) under the following electricity applied in voltage
throughout the plate:

¢ = gosin (ﬂ) | (67)

A L . .

Let us assume the thickness of the plate is h, and the normalized thickness coordinate
¢ = x3/h. Then, the small pafameter used in our theory is

h wh ‘

Table 1 lists the nontrivial displacements and stresses. The exact solutions are obtained

based on [23] and expanded into a series in terms of § with o(*) denoting terms asymptotically
smaller than the order of *. The present theory can predict the correct results up to the second
order of § with respect to the leading terms for each 3-D quantities, which clearly demonstrate
that our theory is asymptotically correct up to the second order for this particular problem,
although the prediction of transverse components for this problem is out of the power of our
theory. ' :
However, this should not mislead the reader to assume that the present theory is
asymptotically correct up to the second order in general. The authors are aware that the
proposed theory can be at best asymptotically correct up to the second order for particular
~ cases. For the general case, however, the theory can only be interpreted as that Reissner-
Mindlin model which is the closest to being asymptotically correct. To illustrate the above
statement, we provide the results for the same piezoelectric plate under a transverse surface
mechanical load in addition to the aforementioned electrical charge:

0=

T3 =3 =AZ—)29 sin (%) | _ (69)
Table 2 only lists the nontrivial displacement results. One can observe from Table 2 that there
is a slight difference for the second order prediction (relative to the dominant terms) between
the present theory and exact solution. It is interesting to note that if one sets v equal to zero
the difference disappears. Evidently some information belonging to second order and indeed
included in the asymptotically correct energy cannot be captured in a Reissner-Mindlin type
model. When we transform the asymptotically correct model into a Reissner-Mindlin model,
this information is lost. _ -

However, since the loss is small in comparison to the dominant terms, the numerical
difference between the present theory and the exact solution is expected to be small. To verify
this expectation, we will preSent some numerical results for piezoelectric plates to demonstrate
the accuracy of our theory. We study a single-layer plate with A=1 mm and L=4 mm under
the applied electricity as in Equation (67) with ¢0=100 V and mechanical load on the surfaces
as in Equation (69) with po=1 MPa. The piezoelectric material properties are taken from [8]

E; = Er = 63GPa
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Table 1. Three-dimensional displacement and stresses under uniform temperature change

through the thickness
Normalized lateral displacement (#j’;
_ ) ey m(12¢%-1)v m3v[120¢%(1-2¢%)(v—2)+v+14] ¢3 4
Exact A 50 + 5760 =) 6° + o(6%)

(v+1) g1 (12¢2-1) 2
Present —*2=16~1 — TS =5 4 0(6?)

Normalized transverse displacement (753

hddo /.
72 C(AC 17 ¢o | miCu[BC2(6¢°~5)(v+1)—v+15] ¢4 4
Exact VC-]—‘ (1) “26 4 =X 57600—1) 8% + o(6%)
Present v({ + %52 +0(8%)
Normalized lateral in-plane stress (3}

(2071w 52 #A(24003—120C%+7)w s4 "
Exact - 2402-1) 6% — 2880(v2 1) &% +o(¢%)
Present —E—%%))"é?+o(52)

Normalized longitudinal in-plane stress (£72-

(1202 =1)7 (240011120071 1)o7
Exact ~1-— ”254(53-—1§ 252 + = 57é0(yg_§)+ 2”51 4+ o(8%)
Present —1 — %))1—52 + 0(62)

Normalized lateral transverse shear stress (—"jg;

7 ¢4~ 3 4 .
Exact ma -+ 0(5 ) '
Present Not available

- Normalized lateral transverse shear stress ( —}fﬁ;
" o PR )
Exact Mé'i + 0(64)

381(v2—1)
Present Not available

Table 2. Three-dimensional displacements under linearly distributed temperature change
through the thickness

Normalized lateral displacement (U;)

Ex act _12hp%7(:;2—1‘) 53 + h(v+1){po¢ [(201/_4;)::+9u+6)f1voEd¢0]} 51+ 0(5—1)

Present l%l 52 4 (h(v+l){PIOC[(201/—4;);)::+9u+6)—10Ed¢0]} 4 ﬁdiff)- 51 4 o(571)
Normalized transverse displacement (Us) ‘

ooy Hintlye SOOI ys o5y

Present  12aa(iDig-4 _ (Pt CRIIS] ) 522 4 o(672)

[“J e 4hpolv (3313 —Tv4 45803+ 5802 —1104-29)
Cdiff = SEn(11v1-1203 13402120+ 11)
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Figure 2'.. Distribution of the 3-D stress 0y, vs the thickness coordinate. Solid line: exact
solution: dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.

2

—

] ]
28] — [en)

'
w

ngiludinal In- Planc Stress (MPa)

[
=N

-04 -0.2 0 0.2 0.4
Normalized thickness coordinate

Figure 3. Distribution of the 3-D stress o2 vs the thickness coordiﬁate. Solid line: exact
solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.

GLT = GTT = 24.6 GPa
VT = VUrr = 0.28
diz =dps3 =150x 1072 m/V v - (70)

Figures 2 — 5 plot the nontrivial components of 3-D stress distribution through the thickness.
(Note that, because the 2-D variables are either sine or cosine functions of z;, 0qp and o33 are
plotted for the position z; = L/2, and 0,3 are plotted for the position z; = Qor z; = L.)
One can observe that VAPAS results are, almost on the top of exact solutions and much better
- than the results of CLT and FOSDT. The loss of information is almost negligible.

The present theory is formulated with sufficient generality to carry out a thermopiezoe-
lastic analysis for arbitrary composite laminated piezo_electric plates made with monoclinic
material with a computational cost equivalent to that of FOSDT. To demonstrate this fact, we
study a more challenging and realistivc problem. It is a four-layer smart plate with A=1 mm

3
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Figure 4. Distribution of the 3-D stress 013 vs the thickness coordinate. Solid line: exact
solution: dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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Figure 5. Distribution of the 3-D stress o33 vs the thickness coordinate. Solid line: exact
solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.

and L=10 mm (see Figure 6). The two face sheets are made with piezoelectric material with
properties as in Equation (70) and the inside layers are normal graphite/epoxy composites
with the following properties: :

E; =172GPa Er =6.9GPa

Gir =34GPa Grr =14GPa
vir = 0.25 vrr = 0.25 ' (71)
The piezoelectric layers are each 0.1 mm thick, and the regular composite layers are each
0.4 mm thick. The layup scheme is [0°/ —45°/45°/0°] from bottom to top. An electric charge
according to' Equation (67) with ¢o=10 V is applied to both piezoelectric layers with the
positive direction align with the z3 coordinate. The recovered stresses are plotted in Figures

7= 12. Again, there is an excellent agreement between 'VAPAS results and those of the exact
solution except the transverse normal stress. VAPAS cannot predict a very accurate transverse
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Figure 6. Sketch of a four-layer smart plate

normal stress for this case because this quantity contains significant terms with order higher
than the second order which is beyond the capability of VAPAS, as we observed from Table 1.
Nevertheless VAPAS qualitatively captures the shape of the distribution through the thickness.
Careful readers may also find that there is an obvious discontinuity of the distribution of the
transverse normal stress which should not be there. The reason for this violation is that our
theory is displacement-based and at most asymptotically correct up to the second order. The

" approximation causes this discontinuity. However, it is comforting to notice that the actual

values for this stress component are very small relative to the rest.

To investigate the behavior of a piczoelectric plate under a combination of different kinds
of loads, we apply a mechanical load according to Equation (69) with p, = 1MPa onto the
surfaces. All the components of the stress due to the combination of these two loads are
plotted in Figures 13 — 18. This time VAPAS achieves excellent agreement with the exact
solution for all six stress components, including the transverse normal stress. This happens
because stresses caused by mechanical loads are of orders lower than the second order and
within the power of the present theory. ' ‘

The thermoelastic behavior of composite plates has been studied in [15). The current
version of VAPAS can reproduce all the results there. No additional examples will be given
here for the sake of brevity.

> %
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Figure 7. Distribution of the 3-D stress 01; vs the thickness coordinate. Solid line: exact
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Figure 10. Distribution of the 3-D stress o33 vs the thickness coordinate. Solid line: exact
solution: dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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Figure 11. Distribution of the 3-D stress o023 vs the thiékness coordinate. Solid line: exact
solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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Figure 13. Distribution of the 3-D stress o1y "vs the thickness coordinate. Solid line: exact
“solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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Figure 14. Distribution of the 3-D stress 032 vs .‘the thickness coordinate. Solid line: exact
solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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Figure 16. Distribution of the 3-D stress o3 vs the thickness coordinate. Solid line: exact
solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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Figure 17. Distribution of the 3-D stress a3 Vs the thickness coordinate. Solid line: exact
solution; dots: VAPAS; dashed line: FOSDT; long-dash/short-dash line: CLT.
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7. Conclusion

A thermopiezoelastic model of composite piezoeletric plates has been developed by use of the
variational asymptotic method. A general 2-D constitutive law that is as close to asymptotical
correctness as possible has been obtained by solving the 1-D through-the-thickness analysis.
The original 3-D results have been reproduced as accurately as possible from a Reissner-
Mindlin type plate analysis. Numerical examples show that, although the resulting theory is as
simple and efficient as a single-fayer first order shear deformation theory, it can approximate |
- the 3-D exact solution very accurately.

' The present work differs from previous work on this topic in the lxterature in the
following five aspects:

(i) The present formulation is in an intrinsic form whrch is suitable for both geometrlcally
‘nonlinear and linear plate theories.

(i) Without using any kinematical ad hoc as‘su'mptions, the dimensional reduction from 3-D
to 2-D is carried out systematically by using the variational asymptotic method.

' (m) The Reissner-Mindlin type model proposed in the present theory is not a FOSDT.

The present theory differs from FOSDT by representing all the deformations that are

purposely eliminated in the development of FOSDT. This is accomphshed through
allowing all possrble deformation in the 3-D warping functions, which are solved in’
turn by the variational asymptotic method. '

(iv) All the loads (mechanical, thermal, and electric) that can be applied to a piezoelectric

plate can be handled by the present theory. Moreover, all the load distribution through

" the thickness can be arbitrary and is approximated in VAPAS by a layerwise fourth-

degree polynomial. This is more realistic and accurate than most existing models, in
which only a constant or linear distribution is allowed.

(v) The present theory decouples the modeling process of the plate completely from the 2-
D plate prob]em described on the reference plane so that the obtained 2-D generalized
 constitutive model can be used as input for any other 2-D standard plate solver: The
flexibility of VAPAS connecting to standard plate and shell solvers can help the structural

- analysts focus more on solving 2-D problem for different situations.- '

The computer program VAPAS can now be used along with a 2-D Reissner-Mindlin type
plate solver to perform an efficient yet accurate and detailed analysis for thermopiezoelastic
behavior of laminated piezoelectric composite plates. Such a tool will be very usef_ul for
designers of piezoelectric plates to more efficiently carry out accurate tradeoff studies. It has
to be emphasrzed that the present work only deals with thermal and/or prezoelectrlc actuation
of smart plates. Changes of temperature and electric fields caused by deformation of the plate,
which is the so-called : sensing capability of smart plates, cannot be treated by means of the
present theory. To extend the theory to deal with this class of problems is pos51ble but requires
' swmﬁcant effort.
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Abstract

A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on
the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the
system total mechanical energy at each time step, and consequently unconditional stability is achieved
in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping
and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells’
based on mixed interpolations of strain tensorial components and on a two-parameter representation of
director rotations. The robustness of the scheme is illustrated with the help of numerical examples.

1 Introduction

‘The formulation of integration algorithms for nonlinear dynamics of geometrically exact shells is the focus
of this work. The partial differential equations governing this class of problems are known to present a
rich mathematical structure. In particular, the resulting models are Hamiltonian systems characterized by
a symplectic nature and associated with conservation laws that stem from symmetries of the Hamiltonian.

The linear and angular momentum as well as the total mechanical energy are conserved for free motions of

such systems.

' The understanding of the geometric characteristics of the governing equations has been historically con-
fined to the fields of analytical mechanics and pure mathematics. Surprisingly, this knowledge has been
seldom used for the development of numerical methods. Indeed, the study of new integration algorithms has
been traditionally preoccupied with the development of methods applicable to vast classes of problems, for
example the class of differential/algebraic equations, or hyperbolic conservation laws. Consequently, classical
methods rarely preserve the underlying structure of the problem being solved, and hence, such structure is
lost in the numerical sclution.

This approach also limits the possxble theoretical analyses of the schemes, which are, more often than
not, confined to linear or model cases. For instance, it is customary to characterize integration schemes
for structural dynamics by studying their behavior when applied to a linear oscillator. This approach is
clearly not adequate when dealing with highly nonlinear problems such as the dynamics of geometrically
exact shells.

A new approach to the design of integration algorithms attempts to bridge the divide between theoretical
and numerical mechanics. Under this new paradigm, numerical schemes are “backward-engineered” to
preserve some important qualitative features of the governing equations. Fittingly, this approach is now
called geometric integration in the mathematical community [20]. Attempts at designing “geometry-aware”
algorithms for structural dynamics problems can be traced ‘back to the work of Simo and co-workers who
analyzed the problems of rigid body dynamics [32], nonlinear elasto-dynamics [29], geometrically exact

* Computer Methods in Applied Mechanics and Engineering, 191, pp 3099 — 3121, 2002




shells [30], and geometrically exact beams [31]. In all cases, the idea was to design algorithms that ensure -
the discrete preservation of the total mechanical energy and of the linear and angular momenta of the system.

When integrating linear and nonlinear finite element models, the implications of the discrete equations
stiffness must be carefully considered. Indeed, high frequencies are an artifact of the spatial dlscretlzatlon
process and do not reflect the high frequencies of the original infinite dimensional problem. The need for
high frequency numerical dissipation has been recognized in the past for linear problems (23]. When dealing
with complex nonlinear systems, numerical dissipation becomes indispensable. Indeed, nonlinearities provide
a mechanism for transferring energy from low to high frequency modes. Consequently, numerical solutions
feature violent oscillations of a purely numerical origin that will eventually play havoc with the convergence
characteristics of the nonlinear equation solver.

Among the various geometric characteristics of ‘shell equations, energy preservation appears to be the
most important for the development of robust time integration schemes. In fact, strici cuergy preservation
at the discrete level leads to unconditional stability in the nonlinear regime, whereas the classical approach
based on the analysis of the spectral radius leads to unconditional stability in the linear regime only. An
energy preserving (EP) scheme for geometrically exact shell is developed in this paper. In addition, the
scheme also preserves both linear and angular momenta of the system at the discrete level. Unfortunately,
preservation of energy and high frequency dissipation cannot coexist, unless energy is transferred from high
to low frequency modes, a transfer that has no physical basis. To solve this problem, a family of energy
decaying (ED) schemes that imply a controllable energy decay within each time step is proposed in this work.
In geometric terms, this means that the evolution of the system is not confined to the level set of constant
energy, but is allowed to drift away from it in a monotonic and controllable manner. Since the energy remains
bounded at all times, the scheme is unconditionally stable for nonlinear systems. Furthermore, it can be
shown that the energy dissipation mechanism of the algorithm is the result of the removal of the higher
frequencies from the computed response. ‘

In related papers, various energy preserving and decaying geometric integrators were developed for rigid
bodies and geometrically exact beams {11, 12, 15, 7, 8], and nonlinear elastodynamics [10]. The concepts
were extended to multibody systems featuring nonlinear holonomic constraints [4, 16, 13, 17, 18, 14]; non-
holonomic and unilateral constraints were treated in [6, 5]. The integration of the present shell model in a
general finite element based multibody framework is discussed in [9]. The proposed scheme is independent
of the choice of spatial discretization applied to the governing partial differential equations. In the present
~ implementation, the finite element method is used, and the mixed interpolation of tensorial components [2,
3, 19] is implemented to avoid the shear locking problem The orientation of unit shell directors is described
by a special family of two-parameter rotations.

Nonlinearly energy decaying schemes have also been considered by other authors. Notably, a modxﬁcatlon
of the Energy-Momentum schemes of Simo and ¢o-authors was pursued for beams and shells in refs. [22, 26],
following on an idea proposed in ref. [1] for contact problems. Unfortunately, although not always explicitely
noted in the cited papers, the resulting algorithms are only first-order accurate, and therefore of little use in .
practical applications. In refs. [27, 26], standard high frequency damping numerical integrators are combined
with the explicit enforcement of conservation laws, in particular the total energy with the possible addition
of the system momenta, resulting in the Constrained Energy Method (CEM) or the Constrained Energy-
Momentum Algorithm (CEMA), respectively. However, this does not seem to be an appropriate manner
of achieving nonhnear unconditional stability: sincé the higher modes are dissipated while the total system
energy must remain constant, the algorithm effectively transfers energy from the artificial high modes to the
physmally meaningful low frequency modes. This un-natural transfer was pointed out in [26].

"In contrast to the published approaches, the method here proposed is the only one to our knowledge
that: a) is higher order accurate (between two and four [8]), 3) removes the higher modes, as demonstrated
by a spectral analysis [8], while at the same ensuring a strict algorithmic total energy decay in the nonlinear
-regime. :

The paper is laid out as follows. The classical equations of motion for geometrically exact shells based
on inextensible unit directors are presented in section 2. Next, an EP scheme is developed in section 3.
Section 4 then presents an ED algorithm with tunable high frequency dissipation that is constructed from
the EP scheme. Finally, numerical examples are presented in section 5 to demonstrate the eﬁ"lcxency and
© robustness of the proposed scheme. A dlscussxon section concludes the paper.




2 Formulation of the Equations of Motion

2.1 Kinematics of the Shell Problem

‘Consider a shell of thickness h and reference surface area €, as depicted in fig. 1. An inertial frame of

reference S consisting of three mutually orthogonal unit vectors i, iz, i3 is used. Let ry be the position
vector of an arbitrary point on the reference surface of the shell, and let { be the materlal coordinate along
n, the normal to the reference surface The position vector r of an arbitrary point on the shell in its reference

conﬁguratnon is then
£(€1,€%,0) = ro(€1,£2) + ¢ n(€h, ), . (1)

where £'and ¢2 are the material coordinates used to represent the shell reference surface. The coordinates
£,£2 and ¢ form a set of curvilinear coordinates that are a natural choice to represent the shell geomictry.
The coordinates £'and £2 are assumed to be lines of curvatures of the shell reference surface. The base
vectors are then

9= [Ql’ 9y -"] ['n L2 32] = [(1-3%) a, (1—R£2) ay, n] (2)

where R; and R, are the principal radii of curvature, a, = Ig,a» 2nd the notation (-) o is used to denote a
derivative with respect to £. It is convenient to introduce a set of three mutually orthogonal unit vectors
at the shell reference surface (ie. at (= 0) '

e= 2l =22 o =p, v ‘ 3)
Vvaii Va2

where aa0 =g, - 2,

Two fundamental assumptions will be made concerning the deformatlon of the shell, i.e. the material
line initially normal to the reference surface of the shell remains a straight line and suffers no extension.
This is the classical inextensible director model. With these assumptions, thé position vector of a material
point of the shell writes

R(€1,6%,¢) = 1o(€",€%) + u(€", %) + ¢ Ey(¢", D), (4)
where u(¢?,£2) is the reference surface displacement vector. In the deformed conﬁguratlon, the base vectors
at the shell reference surface dre

‘ OR
G =[Gy, Gy, G3] = [R 1 B, 34] . (5)
Introducing the position vector, eq. (4), then yields
| . [6 ¢ |

G=|=, =%, ¢C ] =FE+( H, 6
[ﬁr Vam' S| =EHC ©

where \

E E; '

E=|[E,, E,, Ej)= ot H= —4’1,—3'2,0]. 7

Note that _3(61 £€2) is a unit vector, whereas El and E2 are not unit vectors, nor are they orthogonal to
Es, as axial and transverse shearing strains develop during deformation.

2.2 Equations of Mqtion

The GreeAn-LégrangeA strain tensor e ‘is defined as
) o
e= (GG -g"9). | (8)

The strain tensor e is defined in the curvilinear coordinate system defined by coordinates ¢&!,£2 and (.
However, it is more convenient to work with the strain tensor e defined in the locally rectangular system




defined by triad g, e, €3, see egs. (3). For shallow shells (i.e. (/R; < 1 and (/R < 1) undergoing large
displacements and rotations but small strains (all strain components are assumed to be small compared to
 unity), the strain-displacement relationships can be written as

e=z [E"E~1+((E"H + HTE +5)], (9)
where ‘ :
1R 0 0
k=| 0 1/Ry 0 |. (10)
0 0 0 .

It is clear that the strains can be expressed in terms of five parameters: the three components of the
displacement field u (through E, and E,) and the two parameters defining the orientation of the unit
director E3. Virtual changes in the strain energy of the structure are given by

6V:L[;JV dgdﬂ:/nfhae-fdcdn, | | " (11)

where 8V is the virtual strain energy density, and 7 the second Piola-Kirchhoff stress tensor. Introducing
the strains, eq. (9), and taking into account the symmetry of the stress tensor then yields

8V =8E - (E + CH)r + 6H - CE™. (12)

The existence of a strain energy density function V is postulated here, hence the constitutive laws are of the
form 7 = 8V /Be.

- The velocity vector of material point P of the shell is obtained by differentiating the posmon vector,
eq. (4), with Tespect to time, to find ¥ = @ + ¢(E;. The kinetic energy of the system is now

K~=/n/h.r?dcd9_=§/nfhpy-gdcdn, ' (135

where K is the kinetic energy density. Introducing the velocity vector then yields
- 1 . . L ' .
R =5 p(i+CEs) - (u+(Es). | (14)

Hamilton’s Principle can now be expressed as

/:A /h»(“? - V) d&dndt |

=—/t,//[P(52+45.Ea)'(ﬂ+(53_)+5E-(E+CH)T+5H.4ET]'dCdet
ti JQ h

=0. (15)
Iritegratingv through the thickness of the shell, we get
tr o, r. o -
/t ./r; {52' [h — Ny +_N_2,2)] + éE - [g, —(M;,+M,,) +-N3]} d2dt = 0. (16)

In this expression, h = ma + s*E,, and g=s"u+1I *Ea are the linear and angular momentum vectors of

the shell, respectively; the mass coefficients are defined as m = [, p d(, s* = [, p¢ d¢, I* = Juo¢? d¢.”
The in-plane forces are N, = (EN}, + HM?)//aaa, the out-of-plane forces N3 = ENj3, and the bending

moments M, = (EM? ) //@aa. The convected forces are N* = [N}, N3, N3 f »T d¢, and the convected
bending moments M* = M7, M3, M3) = [, ¢ dC. '

The equations of motion of shells could be derived from this principle by expressmg the variations § Eq
. in terms of two components of virtual rotation.




3 Energy Preserving Scheme

Discrete equations of motion that imply discrete conservation laws for the total mechanical energy, linear
momentum and angular momentum of the system will now be developed. The resulting scheme is closely
related to that of ref. [30], with the slight difference of more general definitions of the local mass and
stiffness tensors which are useful for many engineering applications. Similar energy preserving schemes for
geometrically exact shells with extensible directors are given in ref. [28].

Times ¢; and ¢y denote the initial and final times for a time step, respectively, and the subscripts (-); and
()7 indicate quantities at't; and ¢y, respectively. The time step size is denoted At = t; — ¢;. Furthermore,
the subscript ()., is used to denote mid-point average quantities defined as

1
Om=3 Or+Od Nt
. The following matrix identity will be used extensively ' '
| ATB; - ATB; = (A; — A)TBn + AZ(Bs - B)). (18)

Hamilton’s Principle, eq. (15), is now approximated in time in the the following manner

i — 1, Eyp - Es;
./n/h {f’ [(wy — w) + ¢(Esy - Eyy)) - ngty +¢ 4fAt,_3
+(Ef — Bi) - (B + CHm)7a + (Hy — Hy) - cEmTa-} dd2 =0. (19)

The change in strain components from ¢; to ¢ 1 is evaluated with the help of identity (18) to find

1
e—e = 3 [(By—E)(Em +(Hm) + (Em + (Hn)"(E; - Ei)
| +(Hy ~ Hi)TCEm + (B (Hy — Hy)] - | | (20)
Over one time step, the strain components can be approximated as e(n) = em + n(es — €;)/2, where n =

2(t — tm)/ At is the non-dimensional time. If the strain energy density function V is viewed as a function of
the scalar variable 7, the mean value theorem then implies the existence of a 7j € [~1,1] such that

o OV| de. o :
Vf—‘/i+-a—gﬁ%2—w‘+Ta'(ef—ei)' (21)

This relationship defines the average second Piola-Kirchhoff stress tensor, 7, = 8V /de|;. Combining this
result with eq. (20) then leads to Lo

| (Ef — Ei) - (B + (Hp)7a + (Hf — Hy) - CEmTa = (€5 — &) - 7 = V; = Vi, (22)

where the symmetry of the stress tensor was taken into account. For linear constitutive laws of the form
7 = C" ¢, where C* is the stiffness matrix, the average stress tensor simply becomes 7, = C* e,,.
The following configuration updates are now defined

up—u Es; —E3; ' '
_.!F?=ym; %t‘*:&m_ (23)

Introducing eqs. (22) and (23) into the approximate expression for Hamilton’s Principle, eq. (19), then leads
to

/n/h {P (& + (Esp) - [(_@f — ;) + ¢(Esy —.Elaz-)] + (V5 — 17,-)} de¢dQ
| = [ [ {5 g+ Cliop) g+ cloog) = & i+ €l - (i + ¢ + (¥ ~ W)} a0

- =LA[(RI—Ri)+(Vf“ﬂ)] d¢dQ =0. (24)




This result clearly implies the conservation of the total mechanical energy of the system within a step.

In summary, the approximate form of Hamilton’s Principle given by eq. (19) leads to a discrete energy

conservation statement, eq. (24), when the configuration updates are chosen according to eqgs. (23), and the

average stress according to eq. (21). '
Integrating through the thickness of the shell leads to

/n {(yf - ) [hf A_th" = (Nima Jrﬂzm,,)]

9, 8; :
+ (Esy — Eg;)- [ fAt > — (M1 + Mo 2) +N.3m]} dQ=0. (25)

In this expression, the in-plane forces are Nom = (EmNL, + HuM,,)/\/8aa, the out-of-plane forces N,,, =
EmN3,, and the bending moments M,,,. = (EnM2,)/\/@aa- The discrete governing equations of motion
for shells are then '

by — b, |
L~ Wiy + Nom) = 2,5 (26)
9;—9; | *
O L= - QF (M + Moy — Ny) = 4, e

where p are the externally applied loads, and g* the externally applied moments measured in the local
system. The finite change in director orientation E3; — E3; was expressed in terms of the two parameter
incremental rotation vector, see B. . ' o '
Invariance of the system Hamiltonian under spatial translations and rotations implies the conservation
of the linear and angular momenta. Although discrete preservation of momenta is less crucial than discrete

 preservation of energy, it is interesting to note that eqgs. (26) and (27) also imply the discrete preservation

of this invariant. At first, egs. (26) are projected onto the test functions % (ry + ,,) and egs. (27) onto the
test functions & E3pmy where 7 is an arbitrary vector and % is its associated skew-symmetric matrix. Next,
integration over the shell reference surface yields - :

- hy—h; |
S Bt ) [P - (Wi + M)
Q ’ ’ » .

~ 99 ; :
+ BB | L = Wi + Mama) + o } a0, 29)

Straightforward algebraic manipulations then lead to

E | r 27 -4 -~ T ~ ~
At /‘; [(EU +y‘-f) hy - (Zo +3;) by +ﬁm(y.f - ;)
+Erg, —Eg +3, (E; - _E_i)] =0, (29)
where the following result was used :

~ ~

Elm-]-v—lm + E—2mﬂ2m + ES,lmM—lm +-Ea,2m—M2m‘+ -E-Sm—N-3m =0. . (30)

Inserting the configuration updates, egs. (23), into eq. (29) then yields

I i~ ~ o~ ~ = T T . ~ g
& [ @+ by - G+ T b+ Buggy - Bug,+ (Bien + 5, Bem) 42 =0. (31

-~

It is easily verified that h, %, + gml_:l‘sm = 0. Hence, since zis ai‘bitrary, eq. (31) implies the discrete

conservation of the total angular momentum, fn (T +Z) b+ E gl d2. Finally, projecting eqgs. (26) onto the

. test functions 7 and eqgs. (27) onto the null test functions gives the discrete conservation of the total linear

momentum [, hdQ. o » »

-It is important to note that any spatial discretization of the discrete equations of motion will inherit the
discrete energy and momentum conservation statements just proved, when the configuration updates are
chosen according to egs. (23), and the average stress according to eq. (21).

6 .




4 Energy Decaying Scheme

As discussed in the introduction, energy preservation, per se, is not sufficient to yield robust time integration
schemes. High frequency numerical dissipation must be added as an inherent feature of the scheme. Such a
scheme will now be constructed for the shell equations of motion using the EP scheme as a basic building
block. Further details on the scheme are given in ref. [8].

First, an additional state is introduced at time t; = lim._o(t; + €), and the subscript (-); is used to
denote quantities at this time. The following averages are now defined

(e =3[+l On=3103+ 0. (52)

The ED scheme proceeds from the initial to the final time by means of two.coupled steps: one step from ¢;
to ¢y, the other from t; to ¢;. The time-discrete equations of dynamic equilibrium are

hs—h; .
L= = (Nag1 + Nagp) = 2, )
33
9,9,
QL L= ’ =~ QF (Myg1 +Magp — Nog) = g3
h;i—h; 1
JAt—t +3 (Mg + Nog o) = (Naps + Nopo)] =15 (34)
g .-‘l 1 .
QT J z § [QZ (Mlg,l +M_29,2 - ﬂag) - Q;zr (Mlp.l + MZP,'-’ - -N-Sp)] =4
The configuration update relationships are given as
up = u; + At (&g +14;)/2, uj =u; — At [y — @ — oty — 1,)] /6;

' (35)

Eqyp = Bai+ At (Bgy + Egj)/2, Esj = Egi — Ot [Bsg - Esi - als; - E02)] /5,

where o is a tuning parameter that controls the amount of numerical dissipation provided by the scheme,
while the forces N, and moments M, are given by

Nop =Nop+ 0 (Noj = Nai)/2 Map = Map + o (My; — My,)/2 (36)

Using developments similar to those exposed for the EP scheme, it can be easily shown that the proposed
discrete equations imply
(Ky+Vy) = (Ki+ Vi) +ac® =0 | | (37)

c? is a positive quantity given by
1 . , ol . . . . .
@ =[5 [mhal-nal-es 1l 1B+ 1 £ 1 s 1] a0
1 . ,
+ [3 lelc elanzo, | (38)

where || - ||= (-); — (): is the jump between t; and t;. This result implies the decay of the total mechanical
energy over one step of the algorithm, (K5 + V;) < (K; + V;). The parameter a clearly controls the amount
of energy that is dissipated within the step. Two such parameters could be used, controlling the amount of
dissipated kinetic and strain energies, respectively, but this level of complexity does not seem to be necessary.
The property of preservation of momentum observed in the EP case is lost in the ED algorithm.

If the above ED scheme is applied to a single degree of freedom linear oscillator, the asymptotic value
of the spectral radius of the amplification matrix, pe, is found to be poo = (1 - @)/(1 + @). For a = 1,
Poo = 0, and asymptotic annihilation is achieved. If a = 0, peo = 1, and in view of eq. (37), energy is exactly
preserved. Hence, the ED scheme is in fact a family of schemes with a single tuning parameter, o, that
controls the amount of high frequency numerical dissipation; both asymptotic annihilation or exact energy




preservation can be achieved with the same scheme by using o = 1 or 0, respectively. The spectral radius,
algorithmic damping ratio and relative period error, as defined in ref. [24], are plotted in ﬁgs 2 through 4
for varying a.

An error analysis based on Taylor series expansions for the linear harmonic oscillator model problem
determined that the ED(a = 0) scheme is fourth order accurate. For the same model problem, ED(a = 1) is
third order accurate. For general nonlinear problems, numerical experiments show that all methods exhibit
. convergence rates ranging between two and three. :

5 Numerical Examples

All the éxamples described in this section will be treated with the proposed ED familyv of schemes corre-

" . sponding to values of the tuning parameter a € [0,1]. Although any value of @ within this range can be

used, the examples’ described here will contrast the two extreme choices. For o = 1 (peo = 0), asymptotic
annihilation is obtained. On the other hand, for a = 0 (po = 1), exact energy preservation is achieved.

5.1 'Clémped Half-Cylinder under Point Load

Consider the half-cylinder of radius R = 1.2 m and width b = 2 m depicted in fig. 5. The shell has a
thickness ¢ = 6 mm, is build-in along edge BC and free along the other. The structure is made of aluminum;
Young’s modulus E = 73 GPa, Poisson’s ratio v = 0.30 and density p = 2700 kg/m3. At point D, the shell
is subjected to a concentrated load P = —Pp(t)(i; + i + i3). The magnitude of the load is
A _J P(1—-cos2nt/T)/2 t<T, o
o -{ g T (39)

where P = 0.1 kN and T = 2.0 s. The shell was modeled by a regular 8 x 4 mesh of quadratic elements. All -
simulations were run with a time step At = 5.0 10~ s, for a total time of 6 s.

Under the effect of the applied loads, the shell bends predominantly in the vertical direction, its direction
of least bending stiffness, as illustrated in fig. 6 that shows the configuration of the system at various instants
in time. The three components of displacements at point D are shown in fig. 7; vertical displacements of up
to 0.6 m are observed. The components of transverse shearing forces are shown in fig. 8.

Next, the same problem was simulated with po = 1, i.e. with no high frequency dissipation. The
corresponding results are shown in figs. 7 to 8. Displacement and moment results are found to be in
excellent agreement. At the scale of the figures, they are, in fact, indistinguishable. For the period of time
2 < t < 6 s, the system is not subjected to any loading, and the total mechanical energy of the system
should remain constant. For the ED(a = 0) scheme, the energy is indeed preserved, as expected; for the
ED(a = 1) scheme, 0.3% of the energy is numerically dissipated in this period, as depicted in fig. 9. It
could be concluded that the ED(a = 0) and ED(a = 1) solutions are nearly identical, and that numerical
dissipation is not necessary. However, the ED(a = 1) and ED(a = 0) scheme predictions for the transverse
shearing forces, shown in fig. 8, are markedly different. ED(ax = 0) predictions for force componeénts Fi3
show high frequency oscillations that are absent in the corresponding ED(a = 1) predictions. A simulation
using the ED(a = 1) scheme with a tithe step At = 1.0 10~% s showed that the ED(a: = 1) predictions
are converged. A simulation using the ED(a = 0) scheme and the same smaller time step yielded results
with increased high frequency oscillations for the force predictions. It should be noted that the dynamic
response of this simple system is very smooth; yet even here, high frequency numerical d1s51pat10n appears
to be necessary to obtain a smooth, converged solution.

5.2 Dynamic Response of a Plate with Edgé Beams

-Consider the rectangular plate of length L = 2 m, width b = 0.05 m and thickness ¢ = 2 mm as depicted i in
- fig. 10. Two circular beams of radius r = 2 mm are attached at the plate edges. A third circular beam is
‘located at the center of the plate. All components are made of aluminum; Young’s modulus E = 73 GPa,
density p = 2700 kg/m3. The total mass of the edge beams is 10 kg each, and that of the central beam is
1kg. The plate is subjected to uniformly distributed loads F,, and Fy along FE and CB, respectively. The




*

components of these loads along the i, and i3 axes are Fi,, = 40 N/m and F3,,, = 80 N/m, respectively, and
Fjy = —-20 N/m and F3; = —60 N/m, respectively. The common time history of each loading component is

Fi(t)={ F; (1 —cos2nt/T)/2 ::? (40)

where T = 3.0 s. The plate is discretized with 10 quadratic plate elements along its length. A constant time
step At = 6 10793 s was used for all simulations.

At timet > 3 s the applied load vanishes, and the system total mechanical energy should remain constant.
The evolution of the energy of the system for three different cases is shown in fig. 11: the plate model using the -
ED(a = 1) scheme, the same plate model using the ED(a = 0) scheme, and a simplified model of the system
using beam elements and the ED(a = 1) scheme. For times ¢ > 3 s, the total energy remains a constant for the

ED(a = 0) scheme and nearly constant for the ED(a = 1) schemes. The relative energy loss is also presented

in the figure: 0.6% of the energy was dissipated by the ED(ca = 1) scheme in the period ¢ € [3,20] s. This
figure clearly demonstrates the non-increasing property of the energy evolution for the proposed ED(a = 1)
schemes, as opposed the constant energy predicted in ED(a = 0) simulations. The trajectory of the plate
mid-span point is shown in fig. 12: good correlation is observed between the predictions of the three models.
The beam model is slightly off due to the inherent simplifying assumptions. The behavior of the quarter-span
axial force and transverse shear force are shown in fig. 13 and 14, respectively. The poor predictions of the
ED(a = 0) schemes are obvious in these two plots. The history of axial force presents violent oscillations
with amplitudes an order of magnitude larger than those observed for the ED(a = 1) scheme. The hlstory
of the transverse shear force predicted by the ED(a = 0) scheme quickly diverges from the ED(a = 1)
predictions for both beam and plate models. To ascertain the accuracy of the ED(a = 1) predlctlons,
convergence study was performed. Nearly identical results were found with smaller time step sizes At = 3.0
and 1.0 10793 5, or when using the time adaptivity procedure. On the other hand, oscillations of increasing
amplitude were found as the time step size is reduced in the ED(a = 0) scheme. Furthermore, the time
adaptivity procedure failed to yield any results because the time step size was driven to unreasonably small
values, At = 10797 5, a5 the procedure tries to cope with increasingly violent oscillations.

5.3 Dynamic Response of a Cruciform

Consider a cruciform consisting of four thin panels (Panels 4, B, C, and D) connected to a central beam, as
depicted in fig. 15. Each panel is of thickness ¢ = 4 mm, length L = 1.2 m, and width b = 0.1 m. The central
beam has a square cross-section of width @ = 8 mm. A mass M = 12 kg is attached at the tip of the central
beam at point T'. Panels and beam are simply supported at the root of the cruciform. A concentrated load
P(t) is applied at point T. The load acts in the plane defined by axes i, and i3 and makes a 30 degree angle
with axis {,. All components are made of aluminum with properties given in the previous example. The
time history of the applied load is

P@t) = {Po (1-—cos27rt/T)/2 :i; ' (41)

where Pp = 1.2kN and T = Ols

As the applied load increases, in-plane stresses in the panels rapidly increase and buckling takes place
in those panels subjected to compression, as can be observed in fig. 16 that depicts the conﬁguratlon of
the cruciform at two instants in time. The trajectory of point T projected onto plane i,, 3 i3 is shown in
fig. 17. For reference, the corresponding trajectory of a beam with cross-sectional properties equivalent to
those of the cruciform is also presented. Of course, the equivalent beam model is much stiffer since it does
not allow bucklmg to take place. Furthermore, the motion remains confined to the plane defined by axis i,
and the line of action of the applied load. When each panel is modeled mdlvxdually, the stiffness of system
varies both spatially and temporally, giving rise to the more complex motion shown in fig. 17. The total
mechanical energy of the system is shown in fig. 18. From time ¢ = 0.1 to 0.2 s, the system is free and its
total mechanical energy should remain constant. Due the dissipative nature 6f the integration scheme, a
small amount of energy is dissipated over that period of time: 2.7% of the energy was d1551pated over the
2435 time step period.




The root shear force and quarter-span bending moment in Panels A and C are shown in fig. 19 and 20,

respectively. Each panel undergoes alternating phases of tensile and compressive loading. During the com-
- pressive phases, buckling takes place, and large shear forces and bending moments are observed in contrast
with the tensile phases during which these quantities remain much smaller.

5.4 Snap-Through of a Cylindrical Shell

The snap-through behavior of a cylindrical shell under a concentrated load was investigated in ref [27]. The
shell consists of a 60 degree sector of a cylinder of height h = 5 m, radius R = 5 m and thickness t = 0.1 m,
as shown in fig. 21. Material properties are: Young'’s modulus E = 210 GPa, Poisson ratio v = 0.25 and
density p = 10% kg/m3. The two straight edges of the shell are simply supported, while the two curved edges
are free.

A concentrated force F is applied at the shell’s apex. This force linearly increases from 0 to 5 107 N in
0.2 s, then is held constant at that value. The simulation ends at time ¢ = 0.3 s. Due to the symmetry of
the problem, a quarter shell only is modeled; a regular 4 x 4 mesh of quadratic elements was used. The time
step size was selected as At = 103 s.

As the load increases, the shell apex displacement increases, then suddenly, snap-through takes place and
curvature reverses. Curvature reversal initiates in the region of the applied load, then quickly propagates
throughout the entire structure, which undergoes subsequent violent oscillations. Snapshots of the system
at various instants in time are given in fig. 22. The vertical displacements of the point of application of -
the load computed with the ED(a = 1) scheme is shown in fig. 23. Note the gradual increase of the shell
deflection, until collapse at buckling and the resulting vibratory response in the inverted configuration.

Ref. [27] presents simulations of this problem using various schemes: the generalized-a [21] and the
CEMA [27] schemes. The former scheme features high frequency numerical dissipation and linear stability
properties, while the latter adds to the generalized-a method a constraint on the total mechanical energy of
the system. CEMA is therefore both energy preserving and high frequency dissipative. The results presented
in fig. 23 are in close agreement with those obtained with the generalized-a scheme, but quite different from
those predicted by CEMA in the post buckling regime. It is important to realize that the higher modes are
only an artifact of the discretization process, and should therefore be removed from the computed response.
A standard scheme like the generalized-a method accomplishes this goal through the characteristic low-pass
shape of its spectral radius; however, there is no guarantee that energy will not be allowed to grow within one
step for nonlinear problems. In contrast, CEMA enforces the exact conservation of energy in the nonlinear
regime, but at the same time inherits high frequency dissipation from the underlying generalized-« algorithm.
Consequently, an artificial mechanism for transferring energy from the higher (artificial) modes to the lower
modes is created that drives the response to an erroneous solution. In contrast, the proposed ED scheme
achieves both nonlinear stability and high frequency dissipation.

Next, the same problem was simulated with po = 1, i.e. with no high frequency dissipation. In this
. case, two refinements in time step size were required to successfully' complete the simulation, one at time
t = 0.1665 s (At = 5 10~ s), the other at time ¢t = 0.2142 s (At = 2.5 10~* 5). Deflections predicted by the
ED(a = 0) and ED(a = 1) schemes, shown in fig. 23, are in good agreement during the initial snap-through
. phase, but become increasingly different during the subsequent oscillations. The force and velocity fields are
markedly different. The plate center forces for both ED(a = 0) and ED(cx = 1) schemes are shown in fig. 24.
The forces predicted by the ED(a = 0) scheme present violent oscillations of amplitude up to an order of
magnitude larger than those predlcted by the ED(a = 1) scheme. These violent oscillations hamper the
convergence of the Newton process at each time step, leading to the need for smaller time steps. The same
observations can be made about fig. 25 which compares the plate center vertical velocity. Violent oscillations
are initiated at snap-through and the strict preservation of energy implied by the ED(a = 0) scheme prevents
any subsequent decay of these vibrations. Since vibratory stresses are a great importance to designers, it is
essential to assess the ability of new integration schemes to reliably predict these quantities. It is unfortunate
that many scientific publications about geometric integration only present responses for preserved quantities
such as total mechanical energy or momentum. The above plots demonstrate that while ED(a = 0) scheme
might perform very well for the prediction of total energy, momentum, or even displacement fields, they are
unable to reliably predict other important fields such as velocities and internal stresses. Consequently, such
schemes are of little values in real life applications.
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6 Conclusions

In this work, a robust algorithm for the dynamic analysis of geometrically exact shell structures was presented.
The method is geometry-based, i.e. it incorporates knowledge about specific qualitative features of the
underlying partial differential equations. However, departing from the classical approaches based on strict
preservation of energy, the method presented here allows the system to drift away from the level set of
constant energy in a controlled and tunable manner. ‘

This feature achieves two goals. First, a bound is placed on the total mechanical energy of the discrete
system, leading to the concept of nonlinear unconditional stability; this stability criterion is stronger than
that obtained through the classical analysis of numerical schemes. The resulting numerical procedure is
endowed with superior robustness, an important feature when dealing with complex engineering problems.
Second, the monotonic energy drift is ascociated with numerical dissipation of the high frequency modes.
This tunable dissipation makes the algorithm stiffly accurate, and avoids the build up of energy in the higher
modes that are an artifact of the spatial discretization process.

The proposed scheme can deal with general shell structures and is not tied to a specific spatial dis-
cretization of the governing partial differential equations. Kinematic nonlinearities are treated in a rigorous
manner, and material nonlinearities can be handled when the constitutive laws stem from the existence of a
strain energy density function. The efficiency and robustness of the proposed approach were demonstrated
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A Rodrigues Parameters

It is clear that any parameterization of finite rotations [25] could be used with the present shell formulation.
In particular, we have used the Rodrigues parameters r = 2k tan ¢/2, where ¢ is the magnitude of the
finite rotation and k the components of the unit vector about which it takes place. The following notation
is introduced ro = cos?¢/2=1/ (1 +¢T r/4), and the finite rotation tensor R then writes

R@)=I+n7+ 2 | (1)

The following decomposition of the rotation tensor is extensively used in this work

2 EEYT0)0Y ()T

B Orientation of a Unit Director

Consider a unit vector iz, called a director, that rotates to a final orientation e3. For convenience, this
director is considered to be the third unit vector of a triad S defined by 11, %9, %3, rotating to a triad S* with
orientation e;, €,, e3. The relationship between these two triads is e, = R i,, where R is an orthogonal
rotation tensor. If one solely focuses on the director, this rotation tensor is not uniquely defined, as any -
rotation about the director leaves its orientation unchanged. A virtual change in the director orientation is -

bes = €5 0y, 1)

where 0% is the virtual rotation vector, :57/) = dRRT.
The components of the virtual change in director orientation measured in $* become

| | —de3
R78ey = RTeoy =TT RT8y = TToy* = | oy |, )
, 0 ‘

where §9)* are the components of the virtual rotation vector in $*. This relationship clearly demonstrates
that arbitrary values of 6y3, corresponding to virtual rotations of the director about its own orientation,
will not affect virtual changes in the director orientation, and hence, setting 013 = 0 is a valid choice. The
following notation is adopted '

W' =ddai +ixdas =bda%; b= [iy,d). (3)
da” is a 2 x 1, “two parameter” virtual rotation vector. It follows that 8% = R 8y* = Rb §a*, and hence
de, = R b so*. . @

If Rodrigues parameters are used to parameterize R, an equivalent expression can be obtained for finite
changes in director orientation with the help of eq. (2)

€of ~€i=Rm it bs" =Qms" r*=bg" (5)

where r* are the Rodrigues parameter measured in 8*, and 8" the corresponding “two parameter” incremental
rotation vector.

14




configuration

n=e;
Deformed
configuration

-
P
-

|
i
|
|
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Configuration of the clamped half-cylinder.
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Figure 10: Conﬁgﬁration of the plate with concentratéd masses.
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Figure 13: Time history of the quarter-span axial force. Plate model (ED(a = 1)): solid line; Plate model
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‘ ' Figure 15: Configuration of the cruciform problem.
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Figure 16: Configuration of the cruciform at times ¢ = 0.062 and 0.093 s.
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: Figure 21: Configuration of the snap-through problem.
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